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Background
Dynamics of fluid flow over a linear stretching/shrinking sheet plays very significant role 
in many manufacturing applications. The thin polymer sheet constitutes a continuously 
moving solid surface with a non-uniform surface velocity through an or else quiescent 
fluid. The cooling fluids in past times was selected to be the in large quantities avail-
able water, but this has the disadvantage of speedily quenching the heat leading to rapid 
solidification of the stretching sheet (see Andersson 1995, 2002, Fisher 1976, Siddhesh-
war and Mahabaleshwar 2005). From the standpoint of desirable properties of the final 
product water does not seem to be the ideal cooling fluid.

The word of nanofluid refers to a solid–liquid mixture with a continuous phase which 
is a nanometer sized nanoparticle dispersed in conventional base liquids. Nanofluids 
are base-fluids containing suspended nanoparticles. These nanoparticles are typically 
mad of metals, oxides, or carbon nanotubes. There are a few well-known correlations 
for predicting the thermal and physical properties of nanofluids which are often cited 

Abstract 

The present paper investigates the effect of a mathematical model describing the 
aforementioned process in which the ambient nanofluid in the presence of suction/
injection and magnetic field are taken into consideration. The flow is induced by an 
infinite elastic sheet which is stretched along its own plane. The stretching/shrinking 
of the sheet is assumed to be proportional to the distance from the slit. The governing 
equations are reduced to a nonlinear ordinary differential equation by means of similar-
ity transformation. The consequential nonlinear equation is solved analytically. Conse-
quences show that the flow field can be divided into a near-field region and a far-field 
region. Suction on the surface plays an important role in the flow development in the 
near-field whereas the far-field is responsible mainly by stretching. The electromagnetic 
effect plays exactly the same role as the MHD, which is to reduce the horizontal flow 
resulting from stretching. It is shown that the behavior of the fluid flow changes with 
the change of the nanoparticles type. The present study throws light on the analytical 
solution of a class of laminar boundary layer equations arising in the stretching/shrink-
ing sheet problem.
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by researchers to calculate the convective heat transfer behaviors of the nanofluids. The 
word “nanofluid” coined by Choi (1995) describes a liquid suspension containing ultra-
fine particles (diameter less than 50 nm) (See Choi et al. 2001, Keblinski et al. 2005). The 
first providing for this ground of Sakiadis (1961a, b, c) he concentrated on the induced 
affected by the uniform motion of a continuous solid surface taking into account the 
laminar boundary layer approximation.

An exact analytical solution of the equation for a elastic sheet where the surface 
stretching velocity was proportional to the distance from the slot was given in Crane 
(1970). In this presentation, we will perform an analysis of a mathematical model 
describing the aforementioned process in which the ambient nanofluid in the presence 
of mass transfer is taken into consideration.

Solution of mathematical formulation
We reflect on the steady laminar boundary two-dimensional (x, y) co-ordinate magneto-
hydrodynamic (MHD) flows of a nanofluid past stretching/shrinking sheet in the pres-
ence of presence of mass transfer. The liquid is electrically conducting in the presence 
of applied magnetic field with constant strength B0 that is parallel to y-axis. The sheet is 
supposed extended in the x-direction such that the x-component of velocity varies lin-
early with x along its surface. It is assumed that the velocity distribution of the stretch-
ing/shrinking sheet is u = �uw(x) = �αx where x is the coordinates calculated along the 
stretching/shrinking of the sheet, � is a constant with � > 0 for a stretching, � < 0 for a 
shrinking and � = 0 surface is permeable. Stretching/shrinking sheet problems Prandtl 
zero pressure gradient and outside other forces are not considered. In practice, it is only 
an extremely meticulous pulling of the sheet that can allow one to assume linear stretch-
ing. The schematic of the physical replica, geometrical coordinates are depicted in Fig. 1. 
The liquid is a based nanoliquids containing three types namely, Cu, Al2O3 and TiO2. 
Thermophysical properties of the nanoliquid are listed in the below Table 1.  

Fig. 1 The schematic flow diagram of stretching/shrinking boundary a Stretching sheet case (λ > 0) b Shrink-
ing sheet case (λ < 0)
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Conservation of mass and conservation linear momentum are given by

where, d
dt

= ∂
∂t + qj

∂
∂xj

, where, the other quantities have their meaning as mentioned in 
nomenclature.

The bases for present analysis laminar boundary layer equations for an incompressible 
nanofluid.

where, the quantities have their meaning as mentioned in nomenclature. We further 
assume Rm ≪ 1, where Rm is the magnetic Reynolds number.

 The associated boundary conditions on velocity are given by

Laminar boundary layer flows induced by a continuous surface stretching with veloc-
ity uw(x), vc is the mass flux velocity with vc < 0 for suction, vc > 0 for injection and 
vc = 0 is the case when the surface is impermeable.

In the physical stream function formulation ψ
(

x, y
)

 such that

where, ψ
(

x, y
)

= �
√
νf x f (η), f (η) is the dimensionless stream function and 

η =
(

√

α
νf

)

y. The material parameters in (4) are described mathematically by,

where, φ (0 < φ < 1) is the solid volume fraction, ρs is for nanosolid-particles, ρf  is for 
base fluid.

(1)
∂qi

∂xi
= 0,

(2)ρnf

[

∂qi

∂t
+ qj

∂qi

∂xj

]

= −
∂p

∂xi
+ µnf ∇2qi − σB2

oqi,

(3)
∂u

∂x
+

∂v

∂y
= 0,

(4)u
∂u

∂x
+ v

∂u

∂y
=

µ
nf

ρnf

∂2u

∂y2
−

σB2
0

ρnf
u,

(5a)u = �uw(x) = �αx, v = vc, at y = 0,

(5b)u → 0, as y → ∞.

(6)u =
∂ψ

∂y
and v = −

∂ψ

∂x
,

µnf =
µf

(1− φ)2.5
and ρnf = ρf (1− φ)+ ρsφ,

Table 1 Thermophysical properties of the base fluid (water) and nanoparticles

Nanoliquid physical  
properties

Liquid phase  
(water)

Copper Alumina Titania

Cp (J/kg K) 4179 385 765 686.2

ρ (kg/m3) 997.1 8933 3970 42.50

k (W/m K) 0.613 400 40 8.9538
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Equations (3) and (4) admit self-similar solution of the appearance

where, subscript η denotes the derivative.
In the stream function formulation Eq. (6), Eqs. (3) and (4) reduce to

where the second term in the above equation is the Jacobian. Substituting 
ψ
(

x, y
)

= �
√
νf x f (η), into Eq. (8) and following ordinary differential equation

This can be rewritten as,

where, Ŵ1 = (1− φ)2.5, Ŵ2 = 1− φ + ρs
ρf
φ and Q = σB2

0

α ρ
f
 is the Chandrasekhar number 

(
√
Q  is called Hartmann number).

The associated boundary conditions are given by

where, Vc = vc√
α νf

 suction/injection, � represents stretching/shrinking parameter, � > 0 
represents stretching sheet, � < 0 represents shrinking sheet and � = 0 for fixed surface.

We search the solution of the laminar boundary value problem (9) and (10) in the fol-
lowing closed analytical form,

where, β > 0 must satisfy the quadratic equation,

The discriminant of Eq. (13) is positive when � ≥ 0 and it can be negative, if � < 0. In 
the latter case the discriminant is non-negative only if

So in the case of a shrinking sheet if the inequality (13a) is not satisfied it is impossible 
to find β and the analytical solution of the required form does not exist.

Suppose now that the discriminant is ≥0 and distinguish some cases.
Case (i): If Vc = 0 and Ŵ2�+ Q > 0, then β = Ŵ1

√
Ŵ2�+ Q, if Vc = 0 and Ŵ2�+ Q ≤ 0 

it is not possible to find β.

(7)u = αx fη, v = −
√

α νf f (η),

(8)∂3ψ

∂y3
+

ρnf

µnf

∂

(

ψ ,
∂ψ
∂y

)

∂
(

x, y
) −

σB2
0

µnf

∂ψ

∂y
= 0,

(9a)fηηη + (1− φ)2.5

{

(

1− φ +
ρs

ρf
φ

)

{

f fηη −
(

fη
)2
}

−
σB2

0

α ρ
f

fη

}

= 0,

(9b)fηηη + Ŵ1

{

Ŵ2

{

f fηη −
(

fη
)2
}

− Qfη

}

= 0,

(10)f (0) = Vc, fn(0) = �, f ′(∞) → 0,

(11)f (η) = VC + �

[

1− Exp(−βη)

β

]

,

(12)ζ 2 − Ŵ1Ŵ2Vcζ − Ŵ1(Ŵ2�+ Q) = 0,

(13)β =
Ŵ1Ŵ2Vc ±

√

(Ŵ1Ŵ2Vc)
2 + 4Ŵ1(Ŵ2�+ Q)

2
,

(13a)� ≥
(Ŵ1Ŵ2Vc)

2

4
−

Q

Ŵ2

.
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Case (ii): If Vc �= 0 and Ŵ2�+ Q > 0, then the quadratic equation admits two roots of 
different sign and

If Vc �= 0 and Ŵ2�+ Q < 0, then the quadratic equation admits two roots of the same 
sign; if Vc > 0 the two roots are positive and so β has two possible values:

and

Therefore in this case the problem (9) and (10) admits two analytical solutions. 
If Vc < 0, the two roots are negative and so the problem does not admit a solution in 
closed form. If Ŵ2�+ Q = 0, and Vc > 0, then β = Ŵ1Ŵ2Vc; if Ŵ2�+ Q = 0 and Vc < 0, 
then it is impossible to find β.

Finally if � < 0, and the discriminant is equal to 0, then in the case Vc > 0 we have 
β = Ŵ1Ŵ2Vc

2
, while in the case Vc < 0 it is impossible to find β. When it is impossible to 

find β one can try to solve the problem numerically. More over the possibility of two val-
ues of β is not surprising because in the studies on the flows of the classical fluids with a 
stretching/shrinking sheet dual solutions have been found in the literature.

Skin friction

Wall shearing stress τw the expression is given by:

Substituting u = α x �e−βη in Eq. (14), we get

Results and discussion
The present article is the generalization of the classical work of Crane (1970) flow and 
nanofluid driven by stretching/shrinking sheet with external magnetic field and suction. 
The classical Crane solution of the linear stretching sheet is extensive to include nano-
fluid, shrinking and suction/injection of weakly electrically conducting Newtonian flu-
ids and also three types nanofluids, namely Copper (Cu), alumina (Al2O3) and Titania 
(TiO2) in water as the base fluid. The basic boundary layer equation of momentum field 
is mapped into highly nonlinear ordinary differential equations via similarity transfor-
mations. Similarity solution is obtained for the velocity distribution. The velocities are 
decreasing function of η as it is an exponential function with negative argument. It is 

(13b)β =
Ŵ1Ŵ2Vc ±

√

(Ŵ1Ŵ2Vc)
2 + 4Ŵ1(Ŵ2�+ Q)

2
.

(13c)
Ŵ1Ŵ2Vc +

√

(Ŵ1Ŵ2Vc)
2 + 4Ŵ1(Ŵ2�+ Q)

2

(13d)
Ŵ1Ŵ2Vc −

√

(Ŵ1Ŵ2Vc)
2 + 4Ŵ1(Ŵ2�+ Q)

2
.

(14)τw = −µnf

(

∂ u

∂ y

)

y= 0

= −
1

(1− φ)2.5
ρf

√

νf α
3x fηη(0).

(15)τw = µnf α
3 x β

√

�

νf
.
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apparent from Eq.  (11), that is β, which is function of the suction/injection parameter 
Vc , with Vc < 0 for suction, Vc > 0 for injection and Vc = 0 is the case when the surface 
is impermeable, stretching/shrinking parameter �, � > 0 for stretching sheet, � < 0 for a 
shrinking and � = 0 for fixed surface and Chandrasekhar number Q, shows to the slope 
of above exponentially decreasing velocity profiles.

Figures  2, 3 and 4 reveals the influences of Chandrasekhar number Q, on the lami-
nar boundary layer flow field. The presence of Chandrasekhar number Q sets in Lor-
entz force effect, which consequences in the retarding effect on the velocity field. As the 
values of Chandrasekhar number Q, increase, the retarding force increases and con-
sequently the velocity decreases. The same effect is observed for increasing values of 
Vc > 0, it is also clear that increasing values of Q results in flattening of fη. These figures 
reveals that velocity profiles are going closer to the wall and the boundary layer thickness 
becomes thinner for the increasing Q. It is seen that the velocity is going closer to the 
wall and boundary layer thickness becomes thinner for larger Q. The reason behind this 

Fig. 2 Effects of Chandrasekhar number Q on axial fη velocity in the case of Copper (Cu)-water with φ = 0.2 
and Vc = 0.4

Fig. 3 Effects of Chandrasekhar number Q on axial fη velocity in the case of Alumina (Al2O3)-water with 
φ = 0.2 and Vc = 0.4
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is that increase in Q results the increase in Lorentz force which in turn produce more 
resistance to the velocity field. Physically, present phenomena occur when magnetic field 
can induced current in the conductive fluid, then it create a resistive-type force on the 
fluid in the boundary layer, which slow down the motion of the fluid. So finally, it is con-
clude that magnetic field is used to control boundary layer separation. The thickness of 
MHD boundary layer also depends upon the �. For � = −1, the laminar boundary layer 
thickness is larger than a � = +1 and the effects of Q are more pronounced. These effects 
are negligible for � = 1.

Concluding remarks
The laminar boundary layer flows in a nanofluid induced as a result of motion of a 
stretching/shrinking sheet has been presented. We study only analytical solution of the 
problem and some important results of the study are concluded as follows:

 1. The axial velocity and transverse velocity, is a decreasing function of η as it is an 
exponential function with negative argument.

 2. Increasing values of the Q results in pulling down of velocity profiles.
 3. Velocity profiles decrease with an increase in Q (Ferraro and Plumpton 1961) and 

(Borrelli et al. 2015).
 4. The velocity components transverse velocity f  and axial fη are reveals for different 

values of the Q, the velocity decreases with increases in the Q due to an increase in 
the Lorentz drag force that opposes the fluid motion.

 5. The increase of Q leads to the increase of skin friction parameter in all the cases of 
suction/injection.

 6. The classical Crane (1970) flow is recovered from Eq. (13) for Vc = Q = φ = 0 and 
� = Ŵ1 = Ŵ2 = 1.

 7. The classical Pavlov (1974) flow is recovered from Eq.  (13) for Vc = φ = 0 and 
� = Ŵ1 = Ŵ2 = 1.

Fig. 4 Effects of Chandrasekhar number Q on axial fη velocity in the case of Titania (TiO2)-water with φ = 0.2 
and Vc = 0.4
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 8. The Gupta and Gupta (1977) flow is recovered from Eq.  (13) for φ = 0 and 
� = Ŵ1 = Ŵ2 = 1.

 9. The skin friction is lower for stretching and higher for shrinking sheets.
 10. The effect of increasing the Vc and the Q is to increase the velocity and decrease the 

laminar boundary layer thickness in shrinking case (Borrelli et al. 2012, 2013a, b).
 11. The heat transfer at the surface of the sheet increases with the increasing suction/

injection Vc and the nanoparticle solid volume fraction φ.

List of symbols

Cf  skin friction coefficient
B0  magnetic field (w m−2)

f  dimensionless stream function
J  current density
qi and qj  velocity components
Rex  local Reynolds number 

(

Rex = xuw
νf

)

u  axial velocity part along x-axis (m s−1)
v  transverse velocity part along y-axis (m s−1)
Vc  constant suction/injection parameter VC = vc√

α vf
x  horizontal coordinate (m)
y  vertical coordinate (m)

Greek symbols

α  constant in the sheet coefficient (s−1), (α > 0)

�  constant, represents stretching/shrinking parameter
η  similarity variable = 

(

√

α
νf

)

y

µnf   viscosity of the nanofluid (kg m−1 s−1)
νf   kinematic viscosity of the fluid (m2 s−1)
ρnf   density of the nanofluid (kg m−3)
ρf   density of the fluid (kg m−3)
ρs  density of the nanosolid particles
σ  electrical conductivity of fluid (mho m−1)
τw  wall shearing stress (m2 s−1)
φ  nanoparticle volume fraction
ψ  physical stream function (m2 s−1)

Subscripts/superscripts

0  origin
f  fluid
s  solid
w  wall condition
∞  for from the sheet
fη  first derivative w.r. t. η
fηη  second derivative w.r. t. η
fηηη  third derivative w.r. t. η
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