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Abstract  

This work purpose suggest a new analytical technique called the fractional homotopy analysis transform 

method (FHATM) for solving time fractional Bloch NMR (nuclear magnetic resonance) flow equations, 

which are a set of macroscopic equations that are used for modeling nuclear magnetization as a function 

of time. The true beauty of this article is the coupling of the homotopy analysis method and the Laplace 

transform method for systems of fractional differential equations. The solutions obtained by the proposed 

method indicate that the approach is easy to implement and computationally very attractive.  
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1. Introduction 

 

In recent years, considerable interest in fractional differential equations has been stimulated by their 

numerous applications in the areas of physics and engineering [West (2003)]. In past years, differential 

equations involving derivatives of non-integer order provided adequate models for various physical 

phenomena [Podlubny (1999)]. In the study of electromagnetics, acoustics, viscoelasticity, electro 

chemistry and material science. That is so since any realistic modelling of a physical phenomenon having 

dependence not only on the time instant, but also on the previous time history can only be successfully 

done using fractional calculus. The book [Oldham and Spanier (1974)] has played a key role in the 

development of the fractional calculus. Some fundamental results related to solving fractional differential 

equations may be found in [Miller and Rose (2003); Kilbas and Srivastava (2006); Diethelm and Ford 

(2002); Diethelm (1997); Samko (1993)].  

In physics and chemistry, especially  in NMR (nuclear magnetic resonance), MRI (magnetic resonance 

imaging), or ESR (electron spin resonance) the Bloch equations are a set of macroscopic equations that 

are used to calculate the nuclear magnetization   zyx MMMM ,,  in the laboratory frame ),,,( zyx
 1T  and 

2T  

are known respectively as the spin lattice and sin-spin relaxation times to measure the interactions of the 

nuclei with their surrounding molecular environment and those between close  nuclei. Magnetic resonance 

imaging (MRI) is a powerful tool for obtaining spatially localized information from nuclear magnetic 

resonance (NMR) of atoms within a sample. These equations, introduced by Felix Bloch (1946), have 

played a central role in elucidating magnetic resonance phenomena ever since Madhu and Kumar (1997). 

Torrey (1956) modified the Bloch equation by incorporating a diffusion term. The dynamics of an 

ensemble of spins without mutual couplings are usually well described by the Bloch equations [Jeener, 

(1999); Rourke et al. (2004)], which can be viewed as mathematical descriptions of the precession of the 

macroscopic magnetization vector around a (possibly time-dependent) magnetic field. Recently, Petras 

and Bhalekar et al. (2011) have solved the fractional Bloch equations. The Bloch equations can be 

expressed in the fractional form as Petras (2011) 
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                                                                                          (1.1) 

with initial conditions 100)0(,0)0(  yx MM  and ,0)0( zM  where 
00 B   and 

00 2 f   (e.g., gyromagnetic 

ratio TMHzBf /57.422 00   for water protons) and 
0M  

is the equilibrium magnetization.  The complete set 

of analytic solutions of the system of equations (1.1) is given as 
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                                                                                       (1.2) 

Recently, experts are paying great attention to the construction of the solutions of the Bloch equations by 

different methods (some exact and approximate solutions) [Murase and Tanki (2011), Yan et al. (1987), 

Schotland and Leigh (1987), Sivers, (1986)].  

 

The aim of this article is to obtain a new analytical approximate solution of the fractional Bloch equations 

by using the new fractional homotopy analysis transform method. This new proposed method is a 

coupling of the homotopy analysis method and the Laplace transform method. Its main advantage is its 

capability of combining two powerful methods to obtain a convergent series for the fractional partial 

differential equations. The homotopy analysis method was first introduced and applied by Liao (1992, 

1997, 2003, 2004a, 2004b, 2007, 2009). The HAM has been successfully applied by many researchers for 

solving linear and non-linear partial differential equations [Vishal et al. (2012); Jafari et al. (2010); Zhang 

(2011); and Ghotbi (2009)]. In recent years, many authors engaged themselves in the study of the 

solutions of linear and nonlinear partial differential equations by using various methods that incorporate 

the Laplace transform. Among these are the Laplace decomposition methods [Wazwaz (2010) and Khan 

et al. (2012)]. Recently, the homotopy perturbation transform method [Kumar et al. (2012) and Khan et al. 

(2012)] was applied to obtain the solutions of the Blasius flow equation on a semi-infinite domain by 

coupling the homotopy analysis and the Laplace transform methods. Some authors, such as Wei (2012) 

and Zhang (2012), have solved the fractional differential equation by using different numerical 

techniques. 

 

2. Basic Definition of Fractional Calculus and Laplace Transform 

 

Fractional calculus unifies and generalizes the notions of integer-order differentiation and the n-fold 

integration [Podlubny (1999), Oldham and Spanier (1974), Miller and Ross (2003)]. We give some basic 

definitions and properties of fractional calculus theory which shall be used in this paper. 

 

Definition 2.1.  

 

A real function 0),( ttf  is said to be in the space RC  ,  if there exists a real number ,p  such 

that )()( 1 tfttf p  where ),0()(1 Ctf  and it is said to be in the space nC if and only if 

.,)( NnCf n    
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Definition 2.2.  

 

The left sided Riemann-Liouville fractional integral operator of order ,0  of a function 1,  Cf
 
is 

defined as [Luchko and Gorenflo (1999), Moustafa (2003)] 
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where (.)  is the well-known Gamma function. 

 

Definition 2.3.  

 

The left sided Caputo fractional derivative of }0{,, 1   NmCff m

 is defined as [Podlubny (1999), 

Samko (1993)] 
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Note that [Podlubny (1999), Samko (1993)]: 
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Definition 2.4.  

 

The Laplace transform of continuous (or an almost piecewise continuous) function )(tf  in [0, ) is 

defined as 

 





0

,)()]([)( dttfetfLsF st

                                                                                                          (2.3) 

where s is real or complex number.  
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Definition 2.5.  

The Laplace transform of ttf )(  is defined as Podlubny (1999): 

.0)(,0)(,
)1(

][
)1(0
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                                                                       (2.4) 

Definition 2.6.  

The Laplace transform of the Riemann–Liouville fractional integral )(tfI  is defined as Podlubny (1999) 

).()]([ sFstfIL                                                                                                                           (2.5) 

Definition 2.7. 

The Laplace transform of the Caputo fractional derivative is defined as Podlubny (1999) 
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                                                (2.6) 

Definition 2.8.  

The Mittag-Leffler function )(zE
 with 0  is defined by following series representation, valid in the 

whole complex plane, Mainardi (1994) 
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                                                                                                 (2.7) 

 

3. Basic Idea of New Fractional Homotopy Analysis Transform Method (FHATM) 

 

To illustrate the basic idea of the HATM, we consider the following fractional partial differential 

equation: 

,,0.,,..2,1),,(),(][),(][),( 3RrtitrgtrurNtrurRtruD iiiiii

n

t 

 
                                                                                                                    ,1 nnn                                       (3.1) 

where ][, rR
t

D
n

n
n

t 









 
is a linear operator in ][,3 rNRr i

 
is the general nonlinear operator in 

3Rr  

and ),( trg i  are continuous functions. For simplicity we ignore all initial and boundary conditions, which 

can be treated in a similar way. Now the methodology consists of applying the Laplace transform first on 

both sides of Equations (3.1); we get 
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.,...3,2,1)],,([)],(][),(][[)],([  itrgLtrurNtrurRLtruDL iiiii
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t    
                                  (3.2) 

Now, using the differentiation property of the Laplace transform, we have 
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We define the nonlinear operator 
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(3.4) 

where ]1,0[q  is an embedding parameter and );,( qtri  is the real function of tr,  and .q  By means of 

generalizing the traditional homotopy methods, Liao (1992, 1997, 2003, 2004a, 2004b, 2007, 2009) 

constructed the zero order deformation equations as follows 

,...,3,2,1)],;,([),()],();,([)1( 0  iqtrNtrqHtruqtrLq iiii                                                       (3.5) 

where   is a nonzero auxiliary parameter, 0),( trH i
 is an auxiliary function, ),(0 tru

i  
is an initial guess 

of ),( trui  and );,( qtri  is an unknown function. It is important that one has great freedom to choose 

auxiliary items in HATM. Obviously, when 0q  and ,1q  it holds that 

).,()1;,(),,()0;,( 0 trutrtrutr iiii  
                                                                                                 

(3.6) 

Thus, as q  increases from 0  to ,1  the solution varies from the initial guess ),(0 tru  to the solution ).,( trui  

Expanding );,( qtri  
in Taylor’s series with respect to ,q we have  

,),(),();,(
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(3.8) 

If the auxiliary linear operator, the initial guess, the auxiliary parameter ,  and the auxiliary function are 

properly chosen, the series (3.7) converges at ,1q  so that we have 
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(3.9) 

which must be one of the solutions of the original nonlinear equations.  

We define the vectors  

0 1 2{ ( , ), ( , ), ( , ),..., ( , )}, 1,2,3,... .ni i i i niu u r t u r t u r t u r t i 
                                                              

(3.10) 

Differentiating equations (3.5) m  times with respect to embedding parameter q  and then setting 0q  

and finally dividing them by ,!m  we obtain the thm  order deformation equations  

1, 1[ ( , ) ( , )] ( , ) ( , , ), 1,2,3,... .
imi m m i i mi mL u r t u r t q H r t R u r t i    

                                                 
(3.11) 

Operating the inverse Laplace transform on both sides, we get 

 1
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(3.13) 

and 

0, 1,

1, 1.
m

m

m



 

  

In this way, it is easy to obtain ),( trum for ,1m  at M
th

 order, and we have  

,...,3,2,1,),(),(
0




itrutru
M

m
imi

                                                                                               

(3.14) 

when M  we get an accurate approximation of the original equation (3.1). 

 

4. Solution of the Bloch Equation by the New Proposed Method  

 

We consider the following fractional-order Bloch equations in NMR flow as 
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where ,
 
and    are the derivative orders. The total order of the system is ).,,(    

Here, all parameters 

10 , T and 
2T  have the units of qs )(  to maintain a consistent set of units for the magnetization. 

Operating Laplace transform on both sides in system of equations (4.1) and after using the differentiation 

property of Laplace transform, we get 
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We choose linear operators as 

 

,,,)],;([)];([£ zyxiqtLqt ii  
                                                                                                    

(4.3) 

 

with property ,0][£ c  where c  is a constant. 

 

We now define the nonlinear operators as 
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Using the above definition, with assumption 1)( tH i  for ,,, zyxi   we can construct the zeroth order 

deformation equations 
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(4.5) 

 

Obviously, when 0q and ,1q  
 

.,,),()1;(),()0;( 0 zyxitMttMt iiii  
                                                                              

(4.6) 

 

Thus, we obtain the mth order deformation equations 
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Using   

 

),( 1,, tMR mimi 
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from system of equations (4.9) in (4.8), we get 
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Proceeding in this manner, the rest of the components zyxitxM ni ,,),,(,   for 3n  can be completely 

obtained and the series solutions are thus entirely determined. Hence, the solution of Equations (4.1) is 

given as 
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The series solution converges very rapidly. The rapid convergence means only few terms are required to 

get the approximate solutions. Clearly, we can conclude that the obtained solution 
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converges to the exact solution.  

 

5. Numerical Result and Discussion  
 

In this section, approximate solutions are depicted through in Figures 1- 3 for different fractional 

Brownian motions and standard motions. It is seen from Figures 1 and 3 that the approximate solutions 

)(
~

14, tM x
 and )(

~
14, tM z  

increase with an increase in t  for different values of 9.0,8.0,7.0   and also 

for standard Block equations i.e., for .1   It is also seen from Figure 2 that the approximate solution 

)(
~

tM y
 decreases with an increase in t  for different value of .1,9.0,8.0,7.0  It is to be noted that only 

fourteen terms of the homotopy analysis transform method were used in evaluating the approximate 

solutions in all figures.  
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The simplicity and accuracy of the proposed method is illustrated by computing the absolute errors 
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~
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and |,(t)
~

-(t)|)14( zz MME
zM 

 
where ),(tM x  

),(tM y )(tM z  are 

exact solutions and )(
~

),(
~

),(
~

tMtMtM zyx  
are approximate solutions obtained by truncating the respective 

solutions series (4.14) at level .14N    
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           Table 1. The values of the approximate solution at different grid points 

t )(
~

)()14( 14,, tMtME xxx   )(
~

)()14( 14,, tMtME yyy   )(
~

)()14( 14,, tMtME zzz   

0.2 

0.4 

0.6 

0.8 

1.0 

0 
141006581.1 

 
121058665.4 

 
101042915.3 

 
91072397.9   

151079151.5 
 

151078571.3 
 

121026774.4 
 

101011584.3 
 

91063641.8   

171015931.3 
 

171074427.3 
 

161017064.3 
 

141056557.2 
 

131019591.7   

 

The absolute errors between exact and approximate solutions with fourteen terms are given in Table 

for )1,0(t . From Table 1, it is observed that the values of the approximate solution at different grid 

points obtained by the present method are close to the values of the exact solution with high accuracy at 

the level .14N  It can also be noted that the accuracy increases as the value of N  increases. This shows 

that the approximate solution is efficient. It is observed that as we move along the domain, we get 

consistent accuracy. 

 

Figure 4 show the h-curve obtained from the 14
th

-order HATM approximation solution of fractional-order 

Bloch equations in NMR flow (4.1). We still have freedom to choose the auxiliary parameter according to 

 curve. From figure 4, the valid regions of convergence correspond to the line segments nearly parallel 

to the horizontal axis. 

 

1.4 1.2 1.0 0.8 0.6 0.4 0.2

3.0

2.5

2.0

1.5

1.0

0.5

0.0
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6. Conclusions  

This paper develops an effective and new modification of the homotopy analysis method, which is a 

coupling of the homotopy analysis and Laplace transform method, and monitors its validity in a wide 

range of time fractional Bloch equations. The method is applied in a direct way without using 

linearization, discretization or restrictive assumptions. The method gives more realistic series solutions 

that converge very rapidly in time fractional Bloch equation equations. It is worth mentioning that the 

method is capable of reducing the volume of the computational work as compared to the classical 

methods with high accuracy of the numerical result and will considerably benefit mathematicians and 

scientists working in the field of fractional calculus. It may be concluded that the FHATM methodology is 

very powerful and efficient in finding approximate solutions as well as analytical solutions of many 

physical problems. 
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