239 research outputs found

    BBMS + +  – basic bioinformatics meta-searcher

    Get PDF
    In this paper we present a Basic Bioinformatics Meta-searcher (BBMS), a web-based service aiming to simplify and integrate biological data searching through selected biological databases. BBMS facilitates biological data searching enabling multiple sources transparently, increasing research productivity as it avoids time consuming learning and parameterization of different search engines. As a complementary service, BBMS provides insight and links to common online bioinformatics tools. Users’ feedback when evaluating BBMS in terms of usability, usefulness and efficiency was very positive

    Two-Dimensional Impulsively Stimulated Resonant Raman Spectroscopy of Molecular Excited States

    Get PDF
    Monitoring the interactions between electronic and vibrational degrees of freedom in molecules is critical to our understanding of their structural dynamics. This is typically hampered by the lack of spectroscopic probes able to detect different energy scales with high temporal and frequency resolution. Coherent Raman spectroscopy can combine the capabilities of multidimensional spectroscopy with structural sensitivity at ultrafast timescales. Here, we develop a three-color-based 2D impulsive stimulated Raman technique that can selectively probe vibrational mode couplings between different active sites in molecules by taking advantage of resonance Raman enhancement. Three temporally delayed pulses generate nuclear wave packets whose evolution reports on the underlying potential energy surface, which we decipher using a diagrammatic approach enabling us to assign the origin of the spectroscopic signatures. We benchmark the method by revealing vibronic couplings in the ultrafast dynamics following photoexcitation of the green fluorescent protein.C. S. acknowledges financial support by the Royal Commission for the Exhibition of 1851. G. Bat. acknowledges the “Avvio Alla Ricerca 2018” grant by Sapienza Universitá di Roma. T. W. acknowledges the Marie Curie Intra-European Fellowship (PIEF-GA-2013-623651) within the 7th European Community Framework Programme. S. M. gratefully acknowledges the support of the National Science Foundation Grant No. CHE-1663822

    Two-Dimensional Impulsively Stimulated Resonant Raman Spectroscopy of Molecular Excited States

    Get PDF
    Monitoring the interactions between electronic and vibrational degrees of freedom in molecules is critical to our understanding of their structural dynamics. This is typically hampered by the lack of spectroscopic probes able to detect different energy scales with high temporal and frequency resolution. Coherent Raman spectroscopy can combine the capabilities of multidimensional spectroscopy with structural sensitivity at ultrafast timescales. Here, we develop a three-color-based 2D impulsive stimulated Raman technique that can selectively probe vibrational mode couplings between different active sites in molecules by taking advantage of resonance Raman enhancement. Three temporally delayed pulses generate nuclear wave packets whose evolution reports on the underlying potential energy surface, which we decipher using a diagrammatic approach enabling us to assign the origin of the spectroscopic signatures. We benchmark the method by revealing vibronic couplings in the ultrafast dynamics following photoexcitation of the green fluorescent protein

    ‘Sciencenet’—towards a global search and share engine for all scientific knowledge

    Get PDF
    Summary: Modern biological experiments create vast amounts of data which are geographically distributed. These datasets consist of petabytes of raw data and billions of documents. Yet to the best of our knowledge, a search engine technology that searches and cross-links all different data types in life sciences does not exist

    Political activism across the life course

    Get PDF
    The study of political activism has neglected people’s personal and social relationships to time. Age, life course and generation have become increasing important experiences for understanding political participation and political outcomes (e.g. Brexit), and current policies of austerity across the world are affecting people of all ages. At a time when social science is struggling to understand the rapid and unexpected changes to the current political landscape, the essay argues that the study of political activism can be enriched by engaging with the temporal dimensions of people’s everyday social experiences because it enables the discovery of political activism in mundane activities as well as in banal spaces. The authors suggest that a values-based approach that focuses on people’s relationships of concern would be a suitable way to surface contemporary political sites and experiences of activism across the life course and for different generations

    The nature of singlet exciton fission in carotenoid aggregates.

    Get PDF
    Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure-property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1B(u) photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission.This work was supported by the EPSRC (UK) (EP/G060738/ 1), the European Community (LASERLAB-EUROPE, grant agreement no. 284464, EC’s Seventh Framework Programme; and Marie-Curie ITN-SUPERIOR, PITN-GA-2009-238177), and the Winton Programme for the Physics of Sustainability. G.C. acknowledges support by the European Research Council Advanced Grant STRATUS (ERC-2011-AdG No. 291198). J.C. acknowledges support by the Royal Society Dorothy Hodgkin Fellowship and The University of Sheffield’s Vice- Chancellor’s Fellowship scheme.This is the final published version. It was first made available by ACS at http://pubs.acs.org/doi/abs/10.1021/jacs.5b01130
    • 

    corecore