159 research outputs found

    WHO collaborative study to assess the suitability of the 1st International Standard and the 1st International Reference Panel for antibodies to Ebola virus

    Get PDF
    A WHO international collaborative study was undertaken to evaluate preparations of Ebola virus disease (EVD) convalescent plasmas for their suitability to serve as the WHO 1st International Standard (IS) and the WHO 1st International Reference Panel (IRP) for Ebola virus antibodies for use in the standardization and control of assays. The study involved participants testing the convalescent plasma sample preparations and additional monoclonal antibody samples in a blinded manner alongside the WHO International Reference Reagent (NIBSC code 15/220) using anti-EBOV assays established in their laboratories. The candidate 1st IS for Ebola virus antibodies (study sample code 92, NIBSC 15/262) consists of ampoules containing the freeze-dried equivalent of 0.5 mL pooled convalescent plasma obtained from six Sierra Leone patients recovered from EVD. The candidate 1st IRP of anti-Ebola virus convalescent plasmas (NIBSC 16/344) consists of freeze-dried preparations of single donations of convalescent plasma obtained from four patients and one healthy blood donor. Each panel member is an ampoule containing the equivalent of 0.25mL plasma. All convalescent plasmas are confirmed PCR-negative for Ebola virus and underwent, along with the negative plasma, solvent detergent (SD) treatment prior to their development into candidate WHO biological reference materials. In this collaborative study, 17 laboratories from 4 countries used a range of live Ebola virus neutralization assays, pseudotyped virus neutralisation assays and enzyme immunoassays to test the collaborative study samples. Surface plasmon resonance and Western blot assessments were also undertaken. The study found that the candidate International Standard has the highest absolute titre among the convalescent plasma samples, although the geometric mean titres of all the convalescent plasmas fall within ~5-fold of each other. The potencies of three of the convalescent samples fall near the detection limit of some assays. This study also demonstrated that the agreement between laboratories for potencies relative to the candidate International Standard represents an improvement compared to the agreement in absolute titres; however, there is poor agreement between relative potencies for some assays. The results obtained from accelerated thermal degradation studies at 1year indicate that the candidate IS is stable and suitable for long-term use. The results of the collaborative study indicate the suitability of the candidates to serve as WHO reference materials and it is proposed that 15/262 is established as the WHO 1st IS for EBOV antibodies with an assigned potency of 1.5 IU/mL when reconstituted as directed in the instructions for use. It is also proposed that 16/344 is established as the WHO 1st IRP of anti-EBOV convalescent plasmas with panel member code 95 (NIBSC 15/280) assigned a unitage of 1.1 IU/mL when reconstituted as directed in the instructions for use. The other panel members have not been assigned a unitage. The implementation and use by laboratories of the proposed WHO reference materials for EBOV antibodies will facilitate the characterization of the factors that contribute to assay variability and standardization of results across assays and laboratorie

    Unifying the spatial epidemiology and molecular evolution of emerging epidemics

    Get PDF
    We introduce a conceptual bridge between the previously unlinked fields of phylogenetics and mathematical spatial ecology, which enables the spatial parameters of an emerging epidemic to be directly estimated from sampled pathogen genome sequences. By using phylogenetic history to correct for spatial autocorrelation, we illustrate how a fundamental spatial variable, the diffusion coefficient, can be estimated using robust nonparametric statistics, and how heterogeneity in dispersal can be readily quantified. We apply this framework to the spread of the West Nile virus across North America, an important recent instance of spatial invasion by an emerging infectious disease. We demonstrate that the dispersal of West Nile virus is greater and far more variable than previously measured, such that its dissemination was critically determined by rare, long-range movements that are unlikely to be discerned during field observations. Our results indicate that, by ignoring this heterogeneity, previous models of the epidemic have substantially overestimated its basic reproductive number. More generally, our approach demonstrates that easily obtainable genetic data can be used to measure the spatial dynamics of natural populations that are otherwise difficult or costly to quantify

    Mechanisms and in vivo functions of contact inhibition of locomotion

    Get PDF
    Contact inhibition of locomotion (CIL) is a process whereby a cell ceases motility or changes its trajectory upon collision with another cell. CIL was initially characterized more than half a century ago and became a widely studied model system to understand how cells migrate and dynamically interact. Although CIL fell from interest for several decades, the scientific community has recently rediscovered this process. We are now beginning to understand the precise steps of this complex behaviour and to elucidate its regulatory components, including receptors, polarity proteins and cytoskeletal elements. Furthermore, this process is no longer just in vitro phenomenology; we now know from several different in vivo models that CIL is essential for embryogenesis and in governing behaviours such as cell dispersion, boundary formation and collective cell migration. In addition, changes in CIL responses have been associated with other physiological processes, such as cancer cell dissemination during metastasis

    Non-Detection of Human Herpesvirus 8 (HHV-8) DNA in HHV-8-Seropositive Blood Donors from Three Brazilian Regions

    Get PDF
    Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the etiologic agent of all forms of Kaposi's sarcoma, primary effusion lymphoma and the plasmablastic cell variant of multicentric Castleman disease. In endemic areas of sub-Saharan Africa, blood transfusions have been associated with a substantial risk of HHV-8 transmission. By contrast, several studies among healthy blood donors from North America have failed to detect HHV-8 DNA in samples of seropositive individuals. In this study, using a real-time PCR assay, we investigated the presence of HHV-8 DNA in whole-blood samples of 803 HHV-8 blood donors from three Brazilian states (São Paulo, Amazon, Bahia) who tested positive for HHV-8 antibodies, in a previous multicenter study. HHV-8 DNA was not detected in any sample. Our findings do not support the introduction of routine HHV-8 screening among healthy blood donors in Brazil. (WC = 140)

    Genetic Variation in OAS1 Is a Risk Factor for Initial Infection with West Nile Virus in Man

    Get PDF
    West Nile virus (WNV) is a re-emerging pathogen that can cause fatal encephalitis. In mice, susceptibility to WNV has been reported to result from a single point mutation in oas1b, which encodes 2′–5′ oligoadenylate synthetase 1b, a member of the type I interferon-regulated OAS gene family involved in viral RNA degradation. In man, the human ortholog of oas1b appears to be OAS1. The ‘A’ allele at SNP rs10774671 of OAS1 has previously been shown to alter splicing of OAS1 and to be associated with reduced OAS activity in PBMCs. Here we show that the frequency of this hypofunctional allele is increased in both symptomatic and asymptomatic WNV seroconverters (Caucasians from five US centers; total n = 501; OR = 1.6 [95% CI 1.2–2.0], P = 0.0002 in a recessive genetic model). We then directly tested the effect of this SNP on viral replication in a novel ex vivo model of WNV infection in primary human lymphoid tissue. Virus accumulation varied markedly among donors, and was highest for individuals homozygous for the ‘A’ allele (P<0.0001). Together, these data identify OAS1 SNP rs10774671 as a host genetic risk factor for initial infection with WNV in humans

    The Evolution of Robust Development and Homeostasis in Artificial Organisms

    Get PDF
    During embryogenesis, multicellular animals are shaped via cell proliferation, cell rearrangement, and apoptosis. At the end of development, tissue architecture is then maintained through balanced rates of cell proliferation and loss. Here, we take an in silico approach to look for generic systems features of morphogenesis in multicellular animals that arise as a consequence of the evolution of development. Using artificial evolution, we evolved cellular automata-based digital organisms that have distinct embryonic and homeostatic phases of development. Although these evolved organisms use a variety of strategies to maintain their form over time, organisms of different types were all found to rapidly recover from environmental damage in the form of wounds. This regenerative response was most robust in an organism with a stratified tissue-like architecture. An evolutionary analysis revealed that evolution itself contributed to the ability of this organism to maintain its form in the face of genetic and environmental perturbation, confirming the results of previous studies. In addition, the exceptional robustness of this organism to surface injury was found to result from an upward flux of cells, driven in part by cell divisions with a stable niche at the tissue base. Given the general nature of the model, our results lead us to suggest that many of the robust systems properties observed in real organisms, including scar-free wound-healing in well-protected embryos and the layered tissue architecture of regenerating epithelial tissues, may be by-products of the evolution of morphogenesis, rather than the direct result of selection

    Persistent and polarised global actin flow is essential for directionality during cell migration

    Get PDF
    Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence
    • …
    corecore