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Preface

Contact inhibition of locomotion (CIL) is a process of cellular avoidance upon migratory

collision. It was initially characterized more than half a century ago and was at one time a

widely studied model system to understand how cells migrate and dynamically interact.

While CIL fell from interest for a number of decades, the scientific community has recently

rediscovered this process. As a result, we are beginning to understand the precise steps of

CIL along with the molecular mechanisms underlying this complex behaviour.

Furthermore, this process is no longer just in vitro phenomenology; we now know from a

number of different in vivo models that CIL is essential during embryogenesis.
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Introduction

The term “contact inhibition” was first coined by the pioneering cell biologist Michael

Abercrombie in 19541. The discovery that numerous cell types undergo a “directional

prohibition of movement” upon migratory collision was groundbreaking, not because the

process was realized to be critical for animal physiology, but more to do with its ability to

provide a framework to investigate the general mechanisms behind cell motility.

Abercrombie spent his career studying contact inhibition of locomotion (CIL) and in doing

so elucidated a number of fundamental aspects of cell migration, which forms the basis

with regards to how the community thinks about the motility process to this day2.



As will become clear in this review, the process of CIL is multifaceted, requiring not

only an understanding about how cells migrate, but also how they interact and dynamically

modulate their polarity, which are issues at the heart of almost all cell biological

phenomena. However, for a number of reasons it fell from interest for a number of

decades after Abercrombie’s death in 19793. First of all, the initial work on CIL stretched

the boundaries of their understanding of cell motility (for example, cellular actin was only

for the first time directly visualized in 19784). Second, the function of CIL – if any – in

animal physiology was totally unknown. These problems in understanding CIL are now

being overcome. The field of cell motility has matured and our knowledge of the molecular

mechanisms of cell migration is far greater than Abercrombie’s time. Furthermore, live

imaging of cellular behaviours in vivo is now commonplace. We are therefore armed with

a far better knowledgebase to elucidate the mechanisms of CIL and its functions in

processes such as animal development.

In this review, we outline our current understanding of the CIL process, and

describe the quantitative assays at one’s disposal to measure this phenomenon. We will

discuss the recent mechanisms elucidated to play a role in CIL behaviours and discuss

how these mechanisms mediate distinct steps of the CIL process. Finally, we will highlight

the recently discovered functions of CIL in animal development and discuss as yet

unexplored roles for this process during a variety of physiological processes.

Types of CIL Behaviour

Precisely what does it mean for a cell to undergo CIL? Lets start with what it isn’t. While

the term “contact inhibition” initially referred to effects on cell locomotion, it was adopted in

the 60s by those studying contact inhibition of proliferation. This led to confusion that

persists to this day despite warnings from Michael Stoker, who pioneered the proliferative

variety. In fact, Stoker preferred the term “density dependent inhibition of growth” for his

process as there was evidence that physical contact was not needed to inhibit

proliferation5-7, and that “contact inhibition be restricted to arrest of movement as defined

by Abercrombie and Heaysman”8. As of yet, there is no clear mechanistic connection

between CIL and contact inhibition of proliferation and they should not be thought of as

interrelated processes as some have suggested9.

Definition of CIL. So, confusion sorted. Not quite. Even Abercrombie’s definition of CIL

changed over his career as he and colleagues struggled to define its essence. The



variability in the definitions of CIL used in current publications suggests the community is

revisiting these exact same problems. A discussion of the history is therefore worthwhile or

else we risk repeating it. In Abercrombie’s final paper he defined it as “the phenomenon of

a cell ceasing to continue moving in the same direction after contact with another cell.”10

While a complete loss of CIL involves “continued movement such as would carry one cell

over the surface of another.”11 Note that his definition is purposefully vague with regards

to what happens after contact. Does the cell simply stop moving? Does it repolarize and

migrate away? Is it randomly deflected from the colliding cell? Any of these behaviours

constitute CIL by this simple definition. Other CIL researchers noted with obvious

consternation that “quite a number of phenomena having to do with cells’ influences upon

one another’s movements have come to be regarded as expressions of contact inhibition.

However, no single, central mechanism has been shown to underlie them all”12. Even a

cessation of leading edge dynamics upon collision, which is often assumed to be a

hallmark of CIL, was realized to be a poor predictor of contact inhibition12-15, with

Abercrombie even stating that leading edge paralysis was a “red herring” with regards to

the underlying mechanism of CIL14.

Variability in CIL responses. To clarify CIL behaviours efforts were made to classify it

into specific types with some envisioning up to 6 different CIL responses12. In contrast,

Abercrombie simplified CIL into two types that involve either: (I) the local paralysis and

contraction of the leading edge (with contraction being the defining response15, 16) or (II)

the difficulty for a cell to move across the surface of another because it may simply be less

adhesive than the substratum16, 17. To take this a step further with regards to the final

outcome of the response, which is critical to understand the physiological roles of CIL (see

section on Embryological functions of CIL), Type I CIL would lead to an active

movement away from the colliding partner (supplementary movies 1 and 2) whereas Type

II CIL results in a simple cessation of movement or a random deflection (supplementary

movie 3, Figure 1A, B). It is possible that Type II CIL is a more passive response and

controlled by the mechanics of the collision as membrane tension and external forces are

known to effect the actin polymerization machinery at the leading edge18-20. In contrast,

Type I CIL must involve active repolarisation signals and is likely also controlled by specific

surface receptors that allow for cell-cell recognition, which may not be required for Type II

behaviour. Regardless, it is important to stress that CIL does not constitute a single

behaviour making its quantification quite complex (Box 1). Even within a homogenous

population of cells one may see a range of collision outcomes, which may be due to the



variability of the response or the orientation of the colliding partners (e.g. lamellae to

lamellae vs. lamellae to rear)11, 14, 21-23. CIL is therefore not a binary behaviour; changing

the geometry of the collision or the signals involved in the interaction may lead to a

different type of CIL response entirely. A complete failure in CIL (i.e. cells crawling on top

or beneath of one another) has only been observed in a few cell types, with most involving

cancer cell interactions with normal cells11 (supplementary movie 4).

Another parameter that can modify CIL behaviour involves heterotypic vs.

homotypic interactions (Figure 1C, D). There are many examples where collisions between

cells of the same type (homotypic CIL) yield completely different outcomes compared with

collisions with other cells (heterotypic CIL). On the one extreme, one of the cells in a

heterotypic collision may be completely defective in CIL and use the other as a substrate

for its motility. Alternatively, a heterotypic response may simply be subtly changed

compared with the homotypic response, yielding a different type of CIL behaviour.

Importantly, the ability of heterotypic collisions to yield non-mutual outcomes, gives the CIL

process an added level of instructive power, which we will see can lead to emergent

cellular behaviours during animal development (see below).

Stages of the CIL response

In order to elucidate the mechanisms controlling CIL it is important to understand the

possible regulatory stages of the process. For the purpose of this review we will divide the

response into four stages, which have some basis from experimentation. This is a

somewhat arbitrary division as these steps overlap in time. Furthermore, it is important to

note that not all cells undergoing CIL will experience all of these behaviours. For example,

the final outcome of Abercrombie’s Type I CIL is cell contraction and separation, which is

very different from the non-repolarizing Type II response (as discussed above). Therefore

different CIL responses are likely to feature distinct stages. We will focus on hypothetical

steps of classical Type I CIL, which Abercrombie thought to be the prototypical CIL

behavior16. However, it is possible that other CIL types (e.g. Type II) simply represent an

abbreviated response involving some of these stages (e.g. missing the last step of cells

migrating away), and this framework is useful for anyone studying CIL regardless of the

response type.

The proposed sequence of events implicated in CIL is outlined in Figure 2 and

includes the following steps: 1) cell-cell contact, 2) inhibition of cell protrusive activities at

the site of contact, 3) contraction of protrusions at the cell contact and generation of a new



protrusion, and 4) migration away. The first step of cell-cell contact is essential for CIL

and distinguishes it from other repulsive processes that involve cell responses at a

distance (e.g. chemorepulsion). Here it is important to differentiate between cell contacts

established during head-to-head collisions (lamellae to lamellae) versus other orientations

as the geometry of the collision can affect the outcome11, 14, 21-23. This initial contact is

followed by a variable degree of protrusion inhibition. In many cases it is possible to

observe a cessation of protrusion activity immediately after contact24, 25, however as

mentioned earlier, this is not necessarily correlated with CIL capacity. Subsequently, the

cell will undergo leading edge contraction and cell repolarization, although the precise

order of these two events is possibly dependent of the type of CIL. While in some cell

types contraction of lamellae occurs prior to cell repolarization1, 26, others have observed

the opposite27. The final step of a stereotypic CIL response is migration away from the

collision, which likely involves a re-activation of the migratory machinery that may have

been affected by the initial collision.

Molecular mechanisms of CIL

While there is diversity in CIL behaviours, we are starting to get a clearer picture of the

basic molecular mechanisms underlying the various steps behind this phenomenon. Here

we discuss recently elucidated mechanisms underlying the distinct stages of the response

highlighted in Figure 2.

Establishing cell-cell contact. It is clear that cell-cell adhesion plays an important role in

CIL, although the molecular nature of the adhesion is unclear in many cell types26-29.

Recent evidence has revealed that the initial cell contact during CIL often involves the

formation of a transient Cadherin-mediated intercellular junction. Cadherins are a family of

transmembrane glycoproteins, normally thought to be associated with epithelial

monolayers, which facilitate calcium-dependent cell-cell adhesion. Different Cadherins are

found at the cell-cell contact during CIL in a range of cell types, such as E-cadherin, N-

cadherin and cadherin 1127, 30-35. Furthermore, numerous proteins involved in the

formation of a stable adherens junction are also found to be involved in CIL, such as -

catenin, p120, vinculin and -catenin27, 32, 36. It is not completely clear why these

adherens junctions are transient during CIL, while having almost the same composition as

a stable junction between epithelial cells. Recent work using Xenopus and zebrafish



neural crest cells has shed some light on this problem by comparing junctional formation

during responses that involve either a stable or transient adhesion. Cells specifically

expressing E-cadherin remain in contact, while cells expressing N-cadherin undergo

repulsion27. The main difference here is that in contrast to E-cadherin, N-cadherin

signalling leads to cell repolarization27 (Figure 3), which is associated with the differential

capacity of E-cadherin to bind to p12027. It remains to be seen if Cadherin switching is a

general mechanism to control CIL capacity. However it is interesting to note that the

switch between E- and N-cadherin is observed during epithelial mesenchymal transition

(EMT) in neural crest and cancer cells27, 37, which may aid their invasiveness through

modulation of CIL behaviours (see Unexplored roles for CIL). Furthermore, the

differential binding of E- and N-cadherin to p120, which modulates CIL capacity in neural

crest cells, is also linked to the invasive potential of pancreatic cancer cells38.

In addition to classical cell adhesion molecules, other families of receptors have

been implicated in establishing the initial contact during CIL. Eph receptors are a group of

tyrosine kinase receptors that bind transmembrane ephrin ligands on neighbouring cells,

and bidirectional signalling from Eph-ephrin interactions can lead to a repulsive

response39. In Cajal-Retzius neurons both EphA and EphB receptors are required for

normal CIL behaviour, which is necessary for their dispersion40. EphA is also involved in

homotypic CIL between prostate cancer cells, while EphB acts as a suppressor of

heterotypic CIL between these cells and normal fibroblasts41, 42. Thus, the balance of

signalling mediated by different Eph receptors can determine a cell’s capacity for CIL. This

is intriguing as the loss of CIL upon contact of cancer cells with normal cells is speculated

to play a role in cancer metastasis10, and in prostate cancer cells it has been shown to

occur through modulating Eph-ephrin signalling41, 43. There may also be more complicated

interactions between the various receptors involved in CIL. Crosstalk between Ephs and

Cadherins controls 44 . Furthermore, similar crosstalk has been observed during

embryonic boundary formation in Xenopus mesoderm45, which is hypothesized to involve

a process analogous to CIL (see section on Unexplored roles for CIL).

Recently the receptor Robo and its ligand Slit have also been revealed to be

involved in CIL between fibroblasts. Robo receptors belong to the immunoglobulin (Ig)

superfamily of cell adhesion molecules (CAMs), and Slits function as their normally

secreted ligands. NIH 3T3 mouse fibroblasts utilize Robo4-Slit2 signalling during CIL, with

Slit2 apparently tethered to the cell surface rather than secreted. Similar to Ephs,

crosstalk between Slit-Robo and Cadherins is possible46, 47, suggesting that receptor

interactions may be a common theme during CIL.



Protrusion inhibition. The CIL response is normally initiated by interactions between

actin-rich lamellae of colliding cells16, 25, 26. One of the main regulators of lamellae

dynamics during cell migration are small GTPases, Rho, Rac and Cdc42, which have also

been implicated in CIL. For example, collision of neural crest cells leads to an inhibition of

Rac1 activity25, 48, which is dependent on N-cadherin and Wnt-planar cell polarity (PCP)

signaling25, 49. Upon collision many PCP components, including Dishevelled, Prickle1 and

Strabismus, are recruited to the receptor Frizzled7 at the cell-cell contact leading to the

inhibition of Rac1 and activation of RhoA25, 27, 49 (Fig. 2 [Protrusion inhibition]). It is not

clear precisely how Rac1 is inhibited, but it may occur indirectly through RhoA activation

as these GTPases are known to be antagonistic50. In addition, in neural crest cells Par3

becomes localized to the cell contact, which is thought to inhibit the Rac1 activator Trio48

and this may also help to inhibit Rac1 (Fig. 2 [Protrusion inhibition]). Similarly, homotypic

CIL between pancreatic cancer cells is controlled by activation of RhoA-ROCK via EphA

activation, while loss of CIL during heterotypic prostate cancer cell/fibroblast interactions

involves EphB3 or B4 activation and induction of Cdc42 leading to continued cell

migration41. Finally, in fibroblasts Robo4-Slit2 induction during CIL controls the duration of

Rac1 activity51 and glial cell CIL is dependent on Rac1 regulation by Tiam152. Thus small

GTPase regulation is a conserved aspect of CIL regulation in numerous cell types.

Contraction of protrusions and repolarization. Acto-myosin mediated contraction of

protrusions is often observed during CIL. Similar to inhibition of protrusion activity, small

GTPases also play an essential role in this stage of the response. In fibroblast and

Xenopus neural crest cells this occurs through RhoA-ROCK activity25, 53 and in Drosophila

macrophages involves the RhoA responsive formin, Diaphanous26. Abercrombie in his

initial discovery of CIL hypothesized a buildup in intercellular lamellar tension54, which has

recently been revealed to control CIL between Drosophila macrophages26. In Drosophila

macrophages, it was revealed that the development of contractile stress involves the

physical coupling of the flowing actin networks in colliding lamellae suggesting a mechano-

chemical signalling mechanism26. This tension could subsequently have a direct effect on

cell repolarization. For example, in mesodermal cells generating tension by pulling with a

C-cadherin coated magnetic bead can induce cell repolarization55. As mesodermal cells

are known to undergo CIL56, 57, it would be interesting to determine if tension during their

CIL response is actually required for their reorientation.



In addition to actin, other cytoskeletal elements such as microtubules have also

been implicated in CIL in numerous cell types26, 48, 53, 58, 59. In Drosophila macrophages

microtubule targeting of the cell-cell contact is a hallmark of the response26, 58, and in

fibroblasts and neural crest cells, engagement of the cell-cell adhesion during CIL induces

microtubule catastrophe, which seems essential for cell repolarization48, 53, 59. However

the precise mechanisms by which microtubules control the CIL process is currently

unclear.

It should be noted that the precise sequence of the events of contraction and

repolarization is not clear. While in chick heart fibroblasts and Drosophila macrophages,

protrusion collapse appears to precede the formation of new protrusions away from the

contact site15, 26, 28 (Fig. 2 [3b]), this may not always be the case. In neural crest cells, the

formation of new protrusions precedes loss of the cell-cell junction and this repolarization

is thought essential to help generate the tension needed for subsequent lamellar

contraction and cell separation27 (Fig. 2 [3a]).

Migration away from the collision. Once the cells contract their protrusions and

repolarize, the final step in a prototypical Type I CIL response is to migrate away. One

therefore could speculate that there must be reorganization of cell-substrate traction

stresses for this to occur involving a modification of integrin adhesions. Abercrombie was

actually one of the first to visualize focal adhesions during cell motility using interference

reflection microscopy, which highlights regions of the cell membrane in contact with the

substratum22. However, using this technique in fibroblasts undergoing CIL he did not

observe any gross change in adhesions prior to cell contraction22, despite some earlier

evidence to the contrary60. On the other hand, Xenopus neural crest cells reduce focal

adhesions in the vicinity of cell-cell contacts as measured by observing changes in the

distribution of focal adhesion components, such as FAK and Paxillin27, 61. This reduction of

focal adhesions at the cell-cell contact site would then lead to a redistribution of the cell-

matrix traction stresses necessary for movement away from the colliding partner (Fig. 2

[3,4]). These observations suggest that focal adhesion reorganization during CIL might be

a cell-type dependent phenomenon or may occur in only some types of CIL. Alternatively,

the failure to observe focal adhesion changes in fibroblasts by Abercrombie may have

been the result of limitations in the technique used to observe adhesions in these cells.

Nevertheless, it is likely that there is an interaction between cell-cell and cell-matrix

adhesions during CIL as both must be regulated for cells to successfully separate and



migrate away. Indeed, there are many examples of crosstalk between these adhesion

complexes in a number of cell types62-68.

We have clearly come a long way since CIL’s initial discovery in terms of

understanding the regulation of its various stages as numerous components have been

identified to be involved in the process (Fig 2 [Table 1]). What is clearly missing is how all

of these diverse regulatory factors, from Cadherins to focal adhesions, are integrated to

induce a seamless response, and whether all cell types (or CIL types) share these same

mechanisms.

Embryological Functions of CIL

While CIL is at first appearance a simple interaction it has the power to play an instructive

role when present within a population of cells. Indeed, CIL is an excellent example

whereby simple rules can lead to emergent behaviours, which is a recurring theme in

biological pattern generation. Indeed, numerous mathematical models have revealed the

ability of CIL to generate patterns of cellular movements in vitro (Box 2). However, as we

will see, CIL is no longer just an in vitro phenomenon, as a number of groups have

recently revealed roles for this process during embryonic development.

Driving cellular dispersion. CIL has the capacity to disperse a cell population such that

the cells are driven into free space (supplementary movie 5) in a process Abercrombie

termed “negative taxis”69. There are many instances during embryogenesis where a

population of cells originates in a specific location and subsequently disperses to reach

their final positions, and CIL can play a role in their spreading. This is indeed what occurs

during migration of Cajal-Retzius cells (Figure 4A). These cells are born in distinct regions

of the brain and spread throughout the cerebral cortex, which is critical as they control the

subsequent migration of other cell types. CIL dynamics between Cajal-Retzius cells,

regulated by Eph-ephrin signalling, is sufficient to induce the spreading and final

distribution of the population40. Repulsion between these cells is essential for their

distribution, suggesting that they must be undergoing a Type I kind of CIL behaviour.

Inducing cellular tiling. While Cajal-Retzius cells distribute relatively evenly throughout

the cerebral cortex, their distribution is not completely homogenous40. However, there are



many instances in the embryo where cells adopt a very even distribution such as tiled

arrays, and CIL can be a driving factor. Drosophila macrophages are an example of a cell

type that disperses during embryogenesis, eventually adopting a more homogenous

distribution akin to tiling58 (Figure 4B). A combination of live imaging (supplementary

movie 2) and mathematical modelling showed that CIL is sufficient to explain this even

spacing between Drosophila macrophages58. The difference between CIL inducing simple

spreading of a population versus cell tiling appears to be related to the precision of the CIL

response. CIL between Drosophila macrophages is highly orchestrated and collision

dynamics are synchronized between colliding cells in terms of changes in cell motion. This

precision is essential for their even spreading26. Mathematical modelling suggests that

random deflections (e.g. as a result of a Type II CIL response) leads to reduced

homogeneity of the population and inhibiting the orchestration of Drosophila macrophage

CIL prevents cell patterning26. It has been noted that Cajal-Retzius cell distribution shows

regions of aggregation70, which would be somewhat predicted by decreasing the CIL

precision, and it is therefore possible that imprecise repulsive interactions are actually

instructive for the final density of these aggregations.

Coordinating collective cell migration. As mentioned earlier, in vitro analysis of CIL

suggests that it can help orchestrate the collective migration of a cell population, and

neural crest migration during embryogenesis is an excellent example of this coordinating

influence (Figure 4C). Different neural crest populations migrate as coherent clusters or in

linear chains during development, and in vivo experiments in both Xenopus and zebrafish

have revealed that in the absence of CIL coherent movement of cell clusters is severely

affected25. Furthermore, in vitro analysis of epithelial cell migration coupled with

mathematical modelling revealed that chain migration also emerges solely through CIL

dynamics23. Cranial neural crest, for example, migrates toward a chemokine source

(Sdf1), and the presence of CIL within the population is thought to restrain protrusion

between neighbours, thus allowing the entire population to acquire a single, coherent

polarity necessary for their collective motion49.

Interestingly, heterotypic CIL interactions between Xenopus and zebrafish neural

crest and other cell types are also instructive during embryogenesis. For example, neural

crest aid in the morphogenesis of epithelial placodes, which contribute to sensory organs

(Figure 4D). The neural crest cells are attracted to the placodes by placodal expression of

Sdf1. However, placodal cells undergo CIL in response to the neural crest cells, and the

former are subsequently repelled inducing a “chase-and-run” behaviour. The neural crest



cells also undergo CIL in response to placodal contact, however their repolarization

appears to be overridden by their attraction to Sdf1 – thus allowing the chase to

continue61. This cooperation between CIL and chemotaxis has also been observed in

breast cancer cells in vitro71, suggesting that CIL integration with chemotactic cues may be

a common theme in directing cell movement.

It is interesting to speculate why CIL in some cells leads to collective motion while in

others to cell dispersion. It is possible that the final outcome is related to specific

behaviours associated with collision geometry; modelling has revealed that if CIL capacity

is reduced during head-to-tail interactions collective motion can emerge within a cell

population21, 23. However, this may be cell-type dependent as Drosophila hemocytes fail to

undergo CIL during head-tail interactions and disperse rather than show collective

migration26.

Unexplored Roles for CIL

There are numerous physiological processes where cellular behaviours suggest roles for

CIL. Notably, some of these are not actually that speculative as they involve stereotypical

CIL responses that so far have not been linked to the phenomenon of CIL. Other

‘speculative’ roles were even historically called CIL (presumably during a time when

studying CIL was in vogue), but have undergone recent nomenclature changes such that

they are now considered distinct processes. Below are just a few examples.

Neuronal contact repulsion. The nervous system is a good example where CIL is likely

playing a role during a number of developmental events. Neuronal pathfinding is known to

involve both positive cues (such as chemotactic signals) as well as negative, repulsive

signals72. Some of the repulsive varieties that neuronal growth cones experience during

their guidance are known to involve direct cell-cell contact and this has for the last decade

been termed ‘contact repulsion’. However, during Abercrombie’s time this same ‘contact

repulsion’ process was realized to be CIL behaviour73-76.

More speculative roles for CIL in the nervous system involve neuronal patterning

(Figure 5A). There are examples where neuronal populations develop into evenly spaced

cellular arrays, such as in the retina77, that one could imagine involves a similar CIL

process to the tiling of Drosophila macrophages. Indeed, cell-cell contact induced

repulsive interactions have been shown to play a role in neuronal tiling78. Similarly, the

development of dendritic fields, which involve spacing of not only neuronal cell bodies, but



also their dendritic projections, also require contact-mediated mutual repulsion that one

could consider to be a CIL response79, 80.

Zebrafish stripe formation. The intricate patterning of zebrafish pigment cells involves a

process of cell repulsion that for all intent and purposes appears to be the same

phenomenon (Figure 5B). The stripes in zebrafish skin are composed of three cell types

(melanophores, xanthophores, and iridophores) that tile into cellular arrays as well as

segregate to form distinctly coloured lines. During stripe development, the pigment cells

are migratory and undergo contact-dependent repulsive behaviour, which is essential for

acquisition of the final pattern81-83. Furthermore, repulsive responses are unique

depending on whether the pigment cell is interacting with a cell of its own type or another,

suggesting that stripe formation is an example where homotypic versus heterotypic CIL

responses are also playing a role81, 84. Interestingly, this heterotypic pigment cell repulsive

response involves xanthophores chasing melanophores in a process the authors termed

“run-and-chase” behaviour81, which looks identical to the CIL-induced “chase-and-run”

interaction between neural crest and placodal cells61.

Boundary formation. During embryogenesis, cells within tissues, such as in the

hindbrain, are often segregated into distinct subdivisions in which cells are prevented from

intermingling with neighbours at subdivision borders (Figure 5C). The generation of these

boundaries is controlled by a number of active processes, such as differential adhesion,

the generation of cortical tension at the interface, and cell repulsion85. This repulsive

response (actually termed CIL in recent papers45, 85, 86) is known to involve Eph-ephrin

signaling45, 87, which as discussed earlier, is a critical player in CIL in a number of other

cell types.

Cell condensation. There may be instances where turning off CIL behaviours may be

instructive for a population of cells. During embryogenesis groups of mesenchymal cells

often need to condense in order to begin forming a coherent tissue, such as in cartilage

development88 (Figure 5E). Assuming that the cartilage precursor cells due indeed spread

via CIL interactions (as one may expect as at least some cartilage is neural crest derived),

one aspect of the aggregation signal within the population may involve reducing the

repulsive responses between the cells.



Inflammatory cell recruitment. It is not just embryogenesis where CIL may be playing a

role. The immune system involves a complex ecosystem of cell types that requires the

dynamic regulation of cell interactions, and is also a good place to look for instructive roles

for CIL. Indeed, one of the few migratory interactions that have been shown to completely

fail in CIL is the collision between leukocytes and fibroblasts89, 90, and it is possible that this

failure in heterotypic CIL is essential to allow leukocyte migration to sites of infection or

wounds (Figure 5D). Interestingly, leukocytes still show CIL responses during collisions

with each other89 and the negative regulation of this homotypic CIL behaviour may also be

playing a role during immune activation. As discussed above, Drosophila macrophages

spread themselves out uniformly within the animal26, 58, 91, which may be essential for even

immune system coverage. However, during wound activation they must aggregate at

wound sites by somehow modifying their normal repulsive behaviour92, and recent

modelling of Drosophila macrophage wound responses revealed that dampening CIL was

essential for their recruitment93. It remains to be determined whether mammalian immune

cells have the capacity to modulate their CIL responses, but it is interesting to speculate

that processes such as immune cell swarming during infections94 involve changes in

repulsive behaviour to allow such cell aggregation.

Cancer metastasis. Abercrombie speculated about roles for CIL in animal physiology

and his most provocative ideas were regarding CIL in cancer metastasis10, 14, 16, 69 (Figure

5F). He discovered that many cancer cells lost their ability to undergo CIL – not to each

other as many have incorrectly stated – but to other normal cells69. Indeed, he noted that

total failure in contact inhibition has only been observed in a few heterotypic interactions,

such as sarcoma cells with fibroblasts11 (supplementary movie 4). It must be clear that he

did not suggest cancer cells lost their CIL capacity entirely as many cancer cells still

maintain homotypic CIL. He therefore realized that homotypic repulsion between cancer

cells “would greatly increase the efficiency with which the population spreads”69

(supplementary movie 5). It is interesting to hypothesise that metastatic processes such as

EMT, which involve a loss of epithelial characteristics and an acquisition of mesenchymal

traits (such as the possibility for an enhanced CIL capacity), could be playing a role in the

initial spreading of the cancer, similar to neural crest cells27 (Figure 3). Despite much

speculation about CIL in cancer, the molecular mechanisms involved in modulating CIL

behaviour during homotypic and heterotypic cancer cell interactions is largely unexplored.

For example, it is currently unclear whether the E- to N-cadherin switch (Figure 3), which is

widely observed during EMT in cancer, plays a role in modulating CIL behaviour during



metastasis. Furthermore, despite a number of recent in vitro studies confirming a loss of

heterotypic CIL in cancer cells 41, 42, 52, it still remains to be seen whether this is also

occurring in cancers in vivo. As cancer progression is now amenable to live imaging95, it is

time to revisit Abercrombie’s ideas.

Conclusion

It is clear that the process of CIL is being rediscovered, both in terms of a model to

address fundamental cell biology, as well as a ‘signal’ to control the movement of cells

during embryogenesis. While we have come a long way in terms of discovering molecular

pathways controlling CIL, what is currently missing is an understanding of how all these

factors are coordinated, and importantly, fit into the overall dynamics of the process. CIL

behaviour, particularly the active Type I variety cannot be explained by simple signalling

paradigms, and will involve more complex mechanochemical processes that modulate

both cell motility and subsequent repolarisation. The challenge will be in understanding

how rapid cytoskeletal and signalling dynamics propagates both spatially and temporally in

the cell to lead to ultimate cell repolarization. This is not trivial as it involves bridging

temporospatial scales which is experimentally and theoretically challenging, and

something that the cell motility field in general is currently struggling with2. Furthermore,

as CIL has recently been identified in a diverse range of cell types we are starting to revisit

a problem that Abercrombie and colleagues came across decades ago, which is related to

its precise definition. It may be that Abercrombie’s final definition, ‘a cessation of forward

motion upon migratory collision’, is adequate. However, as this definition encompasses

such a wide variety of ultimate responses, it may become so broad that it is rendered

useless on its own. One solution is to reconsider the idea that there are ‘types’ of CIL

responses, which may each have distinct steps and regulatory mechanisms. What will

help in this classification endeavour is precise characterisation of CIL behaviours in

different contexts. Indeed, the more CIL behaviours that are identified the easier it will be

to categorize the response and extrapolate mechanisms, and functions, from one cell type

to the next.



Acknowledgments
We thank Gareth Jones, Claudia Linker, and Maddy Parsons for comments on the
manuscript. BS is supported by the Wellcome Trust and the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. [68108]). RM is supported by the Medical Research Council (MRC)
and the Biotechnology and Biological Sciences Research Council (BBSRC).



Box 1| CIL Assays (includes Figure of assays)

The variability in CIL behaviours makes it essential to choose the correct assay, with

multiple required to fully describe the phenomenon:

Mixing assay. Two differentially labelled explants are cultured at short distance and

overlapping upon outgrowth quantified. During CIL migration ceases when one explant

touches the other. When CIL is impaired, an increase in overlap is observed25, 27, 31, 49. A

variant is to quantify overlapping of individual cell protrusions under higher magnification,

allowing for more detailed behaviour analysis27, 48. An alternative is quantification of nuclei

overlap1, however CIL reduction does not always lead to nuclei overlapping making this

assay less sensitive to subtle effects.

Radial Outgrowth. Explants of cells undergoing CIL radially disperse as this is the most

efficient way for cells to spread. Cell dispersion can then be quantified by measuring the

distance between neighbouring cells, as this is higher in cells undergoing CIL27.

Kinematics in 2D. Cells are cultured on a 2D substrate (or examined in vivo if 2D

descriptions are relevant). During CIL, cells alter their motion, which results in changes in

velocity and acceleration. Note that velocity and acceleration are vectors and therefore

measure changes in both speed and direction. Care must be taken to compare with freely

moving cells to highlight CIL specific effects. It is also important to meaningfully pool data

(e.g. normalize to movement at the time of collision) or else one will observe a random

collection of vectors as collisions occur in many orientations. This is a powerful assay to

describe many aspects of the motion changes surrounding collisions25, 26, 58, 96.

Kinematics in 1D. Cells are cultured on stripes of extracellular matrix and analysed

similar to 2D. This increases the chance of collisions while limiting the degrees of freedom

of motion, which eases interpretation. However, care must be taken to choose an optimal

width of the micropattern as migration can be greatly affected97. There are a number of

possible outcomes in 1D: repolarization and migration of the two cells away from each

other, a non-mutual response with only one cell repolarizing, cells remaining in contact or

migrating past or over each other23, 71, 98.



Box 2 Mathematical models of CIL explain social cell behaviour

Through studying CIL Abercrombie developed a number of approaches to quantify the

‘social behaviour’ of cells in tissue culture, leading eminent scientists to call him “the

pioneer ethologist of cells”99. He led cell biologists away from qualitative analyses and

towards rigorous quantitation100, and he would certainly be inspired by the numerous

mathematical models recently developed to investigate CIL. These models have been

essential in highlighting how this seemingly simple reaction can explain the emergent

social behaviour of a population of cells, which lead to responses such as collective cell

migration. It is unclear precisely why there has been a sudden increase in CIL models, but

it is possible that cell biologists are taking a page from real ethologists who have

developed mathematical models to explain the collective motion of animals. Three simple

rules are required to explain animal flocking behavior101: cohesion of the group, alignment

of motion, and separation (i.e. short range repulsion akin to CIL behaviour), and

interestingly many of the CIL collective motion models use similar parameters. These

models have been used to illustrate 3 types of coordinated cellular motion:

Spontaneous collective migration. Cells in culture often exhibit emergent coordinated

patterns of movement such as swirling and streaming102, which until recently have been

largely unexplained. Modelling has revealed that when one takes into account the inherent

cellular behaviours involved in CIL (e.g. cell repolarization21) within cells interacting within

a population, coordinated movements can spontaneously emerge21, 23, 103-106. In these

cases it is critical that CIL be integrated with other intercellular interactions, such as cell-

cell adhesion23, 105 or chemotactic coattraction106. Furthermore, CIL can lead to other

features observed during collective cellular motion, such as the patterns of traction

stress107.

Collective chemotaxis. There are many examples during development where large

groups of cells need to collectively migrate towards some external cue, and it is unclear

how such populations of cells organize and move in a coordinated fashion. Models have

revealed the CIL behaviour within a population can greatly increase the efficiency of this

coordinated chemotaxis. Again, CIL must be integrated with other factors such as

coattraction108, 109, or confinement110 in order to collectively sense and migrate towards a

chemotactic cue. In a recent twist, modelling revealed that an extracellular gradient

capable of specifically modifying the strength of CIL between cells depending on the local



concentration of the cue is enough to generate collective chemotaxis111. In this case the

chemotactic cue is controlling directed migration by specifically modifying CIL properties

rather than directly controlling the migratory machinery of the cells.

Cellular dispersion and tiling. One final type of coordinated motion that modelling has

revealed to involve CIL is the dispersion of a population of cells. In this case, simple rules

controlling cell collision and subsequent repulsion are capable of ‘driving’ the spreading of

the population40, and depending on the precision of the CIL response (i.e. the consistency

of the repulsion between cells during collisions), can even lead to an even cellular

distribution26, 58. This type of coordinated cellular motion explains the radial outgrowth of

cells from an explant observed by Abercrombie and colleagues. Indeed, the same simple

CIL rules used in a previous kinematic model to explain cellular tiling58 is enough to

simulate the radial outgrowth of cells from an explant (supplementary Movie 5).



Glossary

Contact inhibition of locomotion. A cellular reaction involving a cessation of forward

motion upon migratory collision with another cell.

Contact inhibition of proliferation. The reduced proliferation of cells upon increase in

cellular density, which may or may not involve direct cell contact.

Homotypic CIL. CIL behaviours between cells of the same type.

Heterotypic CIL. CIL behaviours between different cell types.

Adherens junction. A cadherin-mediated cell-cell junction that is normally thought to

mediate the stable adhesion of epithelial cells.

Leading edge (used synonymously with lamellae here). The front of a migrating cell that

contains an actin network that pushes out the plasma membrane and is involved in

generating the forces behind cell migration.

Neural crest cells. A transient embryonic cell type specific to vertebrates, which

undergoes a number of developmental migrations before differentiating into diverse cell

types, such as melanocytes, cartilage, and glia.

Epithelial mesenchymal transition. A process in which epithelial cells lose epithelial

characteristics, such as their polarity and cell-cell adhesions, and gain characteristics

thought specific to mesenchymal cells, such as enhance motility and invasiveness.

Cajal-Retzius cells. A transient neuronal population during embryogenesis that undergoes

specific migrations in the brain and controls the development of other neuronal cells.

Small GTPases. A family of proteins that includes Rho, Rac, and CDC42, which control

the regulation of the cytoskeleton.

Planar cell polarity pathway. The polarization of cells within a sheet in a planar fashion,

which involves a core set of components involving a transmembrane protein, such as

frizzled, and downstream signaling mediators, such as dishevelled.



Eph-ephrin. A transmembrane receptor (Eph) and its membrane bound ligand (ephrin),

which can signal bidirectionally (i.e. both receptor and ligand can induce signaling) to

control the repulsive interaction between different cell types such as neuronal cells.

Slit-robo. A transmembrane receptor (Slit) and its normally secreted ligand (robo) largely

studied in the context of neuronal growth cone guidance.

Formin. A family of proteins involved in polymerization of actin, which has been shown to

regulate specific actin structures, and the organization of contractile cytoskeletal elements

in cells such as stress fibres.

Interference reflection microscopy. A microscopy technique for cells cultured in vitro that

uses polarized light to highlight cell structures close to the substrate, and was first used to

highlight points of cell-substrate adhesion (i.e. focal adhesions).

Focal adhesions. Specific adhesions that anchor cells to the substrate, which contain a

complex of signaling proteins, such as FAK and paxillin, along with transmembrane

proteins such as integrins.

Collective cell migration. A collection of cells that is capable of coordinating their motility

such that they move as a coherent group.

Chemotaxis. The response of cells to an extracellular chemical signal, which induces their

migration in a directed fashion.

Neuronal growth cones. A dynamic, actin-rich structure at the end of axons that controls

the migration nerve cells.

Dendritic fields. The development of an array of neuronal processes called dendrites in

which individual cells cover specific, non overlapping spatial territories.

Mesenchymal cells. Cells of embryonic origin that exist in connective tissues throughout

the body, which develop into a broad range of cell types, such as cartilage and bone.



Figure Legends

Figure 1: Types of CIL behaviours and their outcomes. a, b | Homotypic CIL

interactions, which involve collisions between cells of the same type (cells 1 and 2).

Collisions involving Type I CIL involve active cellular retraction resulting in a predominant

movement away from the colliding partner (a). In contrast, collisions involving Type II CIL

will simply cease moving upon contact with another cell or be randomly deflected around

the collision. c, d | Heterotypic CIL interactions, which involve collisions between different

cell types can also result in Type I (c) or Type II (d) responses.

Figure 2: Stages of CIL and their regulatory mechanisms. (includes Table).

Example of a CIL response involving stereotypical Type 1 behaviour, which ends in active

repolarization. (1) The initial step in the response upon collision is the generation of a cell-

cell contact involving a range of possible receptors and classical cell adhesion molecules.

(2) Subsequently, there will be a variable amount of protrusion inhibition and an alteration

of GTPase signaling, which may directly affect protrusions by altering actin polymerization

at the leading edge, or indirectly by a buildup in lamellar tension. Furthermore, there may

be additional reorganization of the cytoskeleton such as a modification of microtubule

dynamics or stability. (3) The cells will then begin to contract and repolarize (with the order

of these events possibly cell type dependent (3a, 3b), which will require further acto-

myosin contraction and a possible reorganization of focal adhesions. Finally, (4) the cell

will migrate away from the colliding partner. It should be clear that these hypothetical

stages will not be completely distinct, but overlap in time to allow for an integrated and

seamless response.

Figure 3: Cadherin switching regulates EMT and CIL. Epithelial to mesenchymal

transition (EMT) involves a gain in migratory capacity along with a reduction in cell-cell

adhesion and this is controlled by a change in the type of cadherin expressed at the cell

surface. E-cadherin is known to generate stable intercellular adhesions between epithelial

cells. Upon loss of E-cadherin and acquisition of N-cadherin, neural crest cells undergo

EMT while simultaneously gaining a capacity for CIL27. E-cadherin suppresses EMT and

CIL by signaling to other adhesion components, such as p-120 catenin, which polarizes

the small GTPase Rac1 toward cell-cell junctions. In contrast, N-cadherin expression

leads to polarized Rac1 activity towards the leading edge of cells in an epithelial sheet,



which allows them to generate asymmetric traction stresses for directed migration away

from neighbouring cells.

Figure 4: Embryological functions of CIL. a | CIL has been shown to drive the

dispersion of a Cajal-Retzius cells during development40, a neuronal population in the

cerebral cortex. The cells are initially clustered and due to their Eph-ephrin regulated CIL

interactions they spread throughout the tissue in a manner similar to radial outgrowth from

an explant (supplementary movie 5). b | CIL controls the even spacing of Drosophila

macrophages (hemocytes) during their developmental dispersal, which requires precisely

orchestrated CIL interactions26, 58. This CIL precision is regulated by the coupling of the

flowing actin networks between colliding lamellae, which leads to the development of

intercellular tension26. c | Homotypic CIL interactions control the collective migration of

neural crest cells during their migration25, 109. In this case, CIL behaviour is integrated with

other intercellular responses, such as co-attraction mediated by a chemoattactant, C3a109,

and chemotaxis49 (not shown here) to allow for coherent motion of the population. d |

Heterotypic CIL interactions also control the coordinated movement of neural crest and

placodal cell populations61. The neural crest are attracted to placodal cells via placodal

expression of the chemoattractant, Sdf1. Due to placodal CIL responses to neural crest,

the placodal cells are ‘driven’ collectively in a response termed chase and run behaviour.

Figure 5: Unexplored roles for CIL in vivo. a | Repulsion between neuronal cells,

which has recently been termed ‘contact repulsion’, involves cellular interactions

analogous to the CIL described in this review. CIL may be involved in spacing neuronal

cells bodies or preventing overlap of their dendrites to allow dendritic tiling77-80. b |

Zebrafish stripe formation involves the spacing of different pigment cell populations

requiring intercellular interactions that appear identical to CIL81-84. c | The formation of

boundaries in the hindbrain, which involves segmentation of cell populations, has been

hypothesized to require CIL-type behaviours that prevent intermixing45, 85-87. d | Cartilage

condensation involves the coalescence of cells in the mesenchyme, which may involve

turning off CIL interactions88. e | Inflammatory cell activation requires immune cells to

gather to sites of infection or wounding92, 94, and their ability to gather at these sites has

been hypothesized to involve a reduction in their CIL capacity93. f | A loss of CIL in

cancerous cells may be involved in metastasis by aiding their invasiveness into

neighbouring tissues (i.e. loss of heterotypic CIL)10, 14, 16, 41, 42, 52, 69. It is also possible that

enhanced spreading may be controlled by maintenance of CIL interactions between



cancer cells (i.e. homotypic CIL), which would provide a driving force for the spreading of

the cancer population in a fashion similar to CIL in cell dispersion69. Therefore, both a loss

of heterotypic CIL and maintenance of homotypic CIL could be playing a role in the

invasive potential of a cancer.

Supplementary Movies

Supplementary movie 1

Movies from the Abercrombie laboratory showing CIL between chick heart fibroblasts,

which is an example of a cell type exhibiting Type I CIL behaviour. The low magnification

view highlights the collision and subsequent migration away from the colliding partner,

while the high magnification view shows the sudden recoil of colliding lamellae, suggesting

the buildup and release of tension. Movies were restored and digitized with the help of the

Wellcome Library (http://blog.wellcomelibrary.org/2014/09/cells-on-film-making-movies-in-

biology/)100.

Supplementary movie 2

Timelapse movie of Drosophila macrophages developmentally dispersing within the

embryo. Hemocytes contain fluorescently labelled microtubules along with a nuclear

marker, which allows for automated tracking of cells. A single macrophage was tracked in

the centre of the field, which revealed sudden reversals in direction upon collision with

neighbouring cells and this repulsion is suggestive of Type II CIL behaviour. Note the

relatively even spreading of cells within the field of view, which is controlled by CIL

dynamics26, 58, 91.

Supplementary movie 3

Movies from the Abercrombie laboratory showing CIL between epithelial cells in culture.

The low magnification view highlights the collision of two epithelial sheets in culture, while

the high magnification view shows epithelial cell collision between dispersed cells.

Epithelial cells do not show active repolarization during CIL, which is suggestive of Type II

CIL behaviour. Movies were restored and digitized with the help of the Wellcome Library

(http://blog.wellcomelibrary.org/2014/09/cells-on-film-making-movies-in-biology/)100.



Supplementary movie 4

Movies from the Abercrombie laboratory showing a loss of CIL between S180 cells

(sarcoma cells) and fibroblasts. Note that S-180 cells show a complete failure of CIL

behaviour towards fibroblasts and are capable of using these cells as a substrate for their

motility. In contrast, S180 cells still show CIL towards each other revealing a maintenance

of homotypic CIL despite losing heterotypic CIL towards fibroblasts. Movies were restored

and digitized with the help of the Wellcome Library

(http://blog.wellcomelibrary.org/2014/09/cells-on-film-making-movies-in-biology/)100.

Supplementary movie 5

Simulation of outgrowth of an explant of cells in culture. Left panel shows cell positions,

while right panel shows cell tracks. Cells were assumed to migrate with a biased random

walk behaviour. However, when within a defined distance to a neighbouring cell, a CIL

response occurs leading to repulsion. These simple rules lead to spreading and radial

outgrowth of simulated cells from the explant, which is similar to the behaviour of real

explants in vitro. The precise parameters for this simulation were taken from mathematical

modelling of dispersing Drosophila macrophages58.
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