76 research outputs found

    Local Magnetic Susceptibility of the Positive Muon in the Quasi 1D S=1/2 Antiferromagnet KCuF3_3

    Full text link
    We report muon spin rotation measurements of the local magnetic susceptibility around a positive muon in the paramagnetic state of the quasi one-dimensional spin 1/2 antiferromagnet KCuF3_3. Signals from two distinct sites are resolved which have a temperature dependent frequency shift which is different than the magnetic susceptibility. This difference is attributed to a muon induced perturbation of the spin 1/2 chain.Comment: 13 pages, 4 figures, The 2002 International Conference on Muon Spin Rotation, Relaxation and Resonance, Virginia. US

    Hyperfine Fields in an Ag/Fe Multilayer Film Investigated with 8Li beta-Detected Nuclear Magnetic Resonance

    Full text link
    Low energy β\beta-detected nuclear magnetic resonance (β\beta-NMR) was used to investigate the spatial dependence of the hyperfine magnetic fields induced by Fe in the nonmagnetic Ag of an Au(40 \AA)/Ag(200 \AA)/Fe(140 \AA) (001) magnetic multilayer (MML) grown on GaAs. The resonance lineshape in the Ag layer shows dramatic broadening compared to intrinsic Ag. This broadening is attributed to large induced magnetic fields in this layer by the magnetic Fe layer. We find that the induced hyperfine field in the Ag follows a power law decay away from the Ag/Fe interface with power 1.93(8)-1.93(8), and a field extrapolated to 0.23(5)0.23(5) T at the interface.Comment: 5 pages, 4 figure. To be published in Phys. Rev.

    Spin Echo Decay in a Stochastic Field Environment

    Full text link
    We derive a general formalism with which it is possible to obtain the time dependence of the echo size for a spin in a stochastic field environment. Our model is based on ``strong collisions''. We examine in detail three cases where: (I) the local field is Ising-like, (II) the field distribution is continuous and has a finite second moment, and (III) the distribution is Lorentzian. The first two cases show a T2 minimum effect and are exponential in time cubed for short times. The last case can be approximated by a phenomenological stretched exponential.Comment: 11 pages + 3 postscript figure

    Muonium as a hydrogen analogue in silicon and germanium; quantum effects and hyperfine parameters

    Full text link
    We report a first-principles theoretical study of hyperfine interactions, zero-point effects and defect energetics of muonium and hydrogen impurities in silicon and germanium. The spin-polarized density functional method is used, with the crystalline orbitals expanded in all-electron Gaussian basis sets. The behaviour of hydrogen and muonium impurities at both the tetrahedral and bond-centred sites is investigated within a supercell approximation. To describe the zero-point motion of the impurities, a double adiabatic approximation is employed in which the electron, muon/proton and host lattice degrees of freedom are decoupled. Within this approximation the relaxation of the atoms of the host lattice may differ for the muon and proton, although in practice the difference is found to be slight. With the inclusion of zero-point motion the tetrahedral site is energetically preferred over the bond-centred site in both silicon and germanium. The hyperfine and superhyperfine parameters, calculated as averages over the motion of the muon, agree reasonably well with the available data from muon spin resonance experiments.Comment: 20 pages, including 9 figures. To appear in Phys. Rev.

    Efficacy results of pimavanserin from a multi-center, open-label extension study in Parkinson's disease psychosis patients

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordIntroduction: Pimavanserin, a selective 5-HT2A inverse agonist/antagonist, was approved for hallucinations and delusions associated with Parkinson’s disease psychosis (PDP). We present durability of response with pimavanserin in patients with PDP for an additional 4 weeks of treatment. Methods: This was an open-label extension (OLE) study in patients previously completing one of three double-blind, placebo-controlled (Core) studies. All patients received pimavanserin 34 mg once daily. Efficacy assessments included the Scale for the Assessment of Positive Symptoms (SAPS) PD and H+D scales, Clinical Global Impression (CGI) Improvement and Severity scales and Caregiver Burden Scale (CBS), through 4 weeks in the OLE. Safety assessments were conducted at each visit. Results: Of 459 patients, 424 (92.4%) had a Week 4 efficacy assessment. At Week 4 (10 weeks total treatment), SAPS-PD mean (standard deviation) change from OLE baseline was -1.8 (5.5) and for SAPS-H+D was -2.1 (6.2) with pimavanserin 34 mg. Patients receiving placebo during the Core studies had greater improvements (SAPS-PD -2.9 [5.6]; SAPS-H+D -3.5 [6.3]) during the OLE. For participants treated with pimavanserin 8.5 or 17 mg during the Core studies, further improvement was observed during the OLE with pimavanserin 34 mg. The mean change from Core Study baseline for SAPS-PD score was similar among prior pimavanserin 34 mg and prior placebo-treated participants (-7.1 vs. -7.0). The CGI-I response rate (score of 1 or 2) at Week 4 was 51.4%. Adverse events were reported by 215 (46.8%) patients during the first 4 weeks of OLE. The most common AEs were fall (5.9%), hallucination (3.7%), urinary tract infection (2.8%), insomnia (2.4%), and peripheral edema (2.2%) 4 Conclusions: Patients previously on pimavanserin 34 mg during three blinded core studies had durability of efficacy during the subsequent 4 week OLE SAPS-PD assessment. Patients previously on blinded placebo improved after 4 weeks of OL pimavanserin treatment. These results in over 400 patients from 14 countries support the efficacy of pimavanserin for treating PDP.ACADIA Pharmaceuticals Inc. (San Diego, CA

    Giant Vortices Below the Surface of NbSe2_2 Detected Using Low Energy β\beta-NMR

    Full text link
    A low energy radioactive beam of polarized 8^8Li has been used to observe the vortex lattice near the surface of superconducting NbSe2_2. The inhomogeneous magnetic field distribution associated with the vortex lattice was measured using depth-resolved β\beta-detected NMR. Below TcT_c one observes the characteristic lineshape for a triangular vortex lattice which depends on the magnetic penetration depth and vortex core radius. The size of the vortex core varies strongly with magnetic field. In particular in a low field of 10.8 mT the core radius is much larger than the coherence length. The possible origin of these giant vortices is discussed.Comment: 5 pages, 3 figures. Submitted to Phys. Rev. Let

    Muon spin relaxation study of spin dynamics in poly(triarylamine)

    Get PDF
    Organic semiconductors (OSCs) have been of great interest over the last couple of decades owing to their mechanic flexibility, ease of processing, high tuneability and availability. One area of OSCs that is of growing interest is polymers as they possess many of the desirable properties, in particular print processing and tunability of electronic properties, necessary for application in devices such as organic solar cells and the spin valves being engineered for hard disks and logic devices. Much focus has been given in recent years to the areas of research including the electron and hole dynamics, transport mechanisms and spin relaxation in OSCs in order to utilise them in novel organic devices. In this paper the µSR technique is applied to carry out an in depth study of the electron dynamics and spin relaxation in the commonly used Poly(triarylamine) polymer (PTAA). It is shown that the electron wavefunction can be considered localised to the aromatic rings providing a strong hyperfine coupling interaction with the muon. In addition the presence of an electron spin relaxation (eSR) is demonstratated that resembles that previously reported in the small organic molecule series

    КЛАВИАТУРНЫЕ ШПИОНЫ

    Get PDF
    В данной работе приводится обзор клавиатурного шпионажа как одного из главных видов электронного мошенничества. Описана его «легальная» сторона и рассмотрены способы распространения. Так же приведены некоторые рекомендации защиты как от программных, так и от аппаратных клавиатурных шпионов

    Temporal mapping of photochemical reactions and molecular excited states with carbon specificity

    Get PDF
    Photochemical reactions are essential to a large number of important industrial and biological processes. A method for monitoring photochemical reaction kinetics and the dynamics of molecular excitations with spatial resolution within the active molecule would allow a rigorous exploration of the pathway and mechanism of photophysical and photochemical processes. Here we demonstrate that laser-excited muon pump-probe spin spectroscopy (photo-μSR) can temporally and spatially map these processes with a spatial resolution at the single-carbon level in a molecule with a pentacene backbone. The observed time-dependent light-induced changes of an avoided level crossing resonance demonstrate that the photochemical reactivity of a specific carbon atom is modified as a result of the presence of the excited state wavefunction. This demonstrates the sensitivity and potential of this technique in probing molecular excitations and photochemistry
    corecore