We report a first-principles theoretical study of hyperfine interactions,
zero-point effects and defect energetics of muonium and hydrogen impurities in
silicon and germanium. The spin-polarized density functional method is used,
with the crystalline orbitals expanded in all-electron Gaussian basis sets. The
behaviour of hydrogen and muonium impurities at both the tetrahedral and
bond-centred sites is investigated within a supercell approximation. To
describe the zero-point motion of the impurities, a double adiabatic
approximation is employed in which the electron, muon/proton and host lattice
degrees of freedom are decoupled. Within this approximation the relaxation of
the atoms of the host lattice may differ for the muon and proton, although in
practice the difference is found to be slight. With the inclusion of zero-point
motion the tetrahedral site is energetically preferred over the bond-centred
site in both silicon and germanium. The hyperfine and superhyperfine
parameters, calculated as averages over the motion of the muon, agree
reasonably well with the available data from muon spin resonance experiments.Comment: 20 pages, including 9 figures. To appear in Phys. Rev.