1,389 research outputs found

    Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles

    Get PDF
    We present a microscopic model for surface-enhanced Raman scattering (SERS) from molecules adsorbed on small noble-metal nanoparticles. In the absence of direct overlap of molecular orbitals and electronic states in the metal, the main enhancement source is the strong electric field of the surface plasmon resonance in a nanoparticle acting on a molecule near the surface. In small particles, the electromagnetic enhancement is strongly modified by quantum-size effects. We show that, in nanometer-sized particles, SERS magnitude is determined by a competition between several quantum-size effects such as the Landau damping of surface plasmon resonance and reduced screening near the nanoparticle surface. Using time-dependent local density approximation, we calculate spatial distribution of local fields near the surface and enhancement factor for different nanoparticles sizes.Comment: 8 pages, 6 figures. Considerably extended final versio

    Plasmonic band gap structures for surface-enhanced Raman scattering

    Get PDF
    Cataloged from PDF version of article.Surface-enhanced Raman Scattering (SERS) of rhodamine 6G (R6G) adsorbed on biharmonic metallic grating structures was studied. Biharmonic metallic gratings include two different grating components, one acting as a coupler to excite surface plasmon polaritons (SPP), and the other forming a plasmonic band gap for the propagating SPPs. In the vicinity of the band edges, localized surface plasmons are formed. These localized plasmons strongly enhance the scattering efficiency of the Raman signal emitted on the metallic grating surfaces. It was shown that reproducible Raman scattering enhancement factors of over 105 can be achieved by fabricating biharmonic SERS templates using soft nano-imprint technique. We have shown that the SERS activities from these templates are tunable as a function of plasmonic resonance conditions. Similar enhancement factors were also measured for directional emission of photoluminescence. At the wavelengths of the plasmonic absorption peak, directional enhancement by a factor of 30 was deduced for photoluminescence measurements. (c) 2008 Optical Society of America

    Vortex Strings and Four-Dimensional Gauge Dynamics

    Full text link
    We study the low-energy quantum dynamics of vortex strings in the Higgs phase of N=2 supersymmetric QCD. The exact BPS spectrum of the stretched string is shown to coincide with the BPS spectrum of the four-dimensional parent gauge theory. Perturbative string excitations correspond to bound W-bosons and quarks while the monopoles appear as kinks on the vortex string. This provides a physical explanation for an observation by N. Dorey relating the quantum spectra of theories in two and four dimensions.Comment: 23 pages, 1 figure. v2: Two extra appendices included: one on the brane construction, the other describing the potential on the vortex moduli space. Two figures added. Typos corrected and references added. v3: BPS nature of quarks correcte

    Beneficial Effects of HIV Peptidase Inhibitors on Fonsecaea pedrosoi: Promising Compounds to Arrest Key Fungal Biological Processes and Virulence

    Get PDF
    BACKGROUND: Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Current therapy for chromoblastomycosis is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the fact that endemic countries and regions are economically poor. PURPOSE AND PRINCIPAL FINDINGS: In the present work, we have investigated the effect of human immunodeficiency virus (HIV) peptidase inhibitors (PIs) on the F. pedrosoi conidial secreted peptidase, growth, ultrastructure and interaction with different mammalian cells. All the PIs impaired the acidic conidial-derived peptidase activity in a dose-dependent fashion, in which nelfinavir produced the best inhibitory effect. F. pedrosoi growth was also significantly reduced upon exposure to PIs, especially nelfinavir and saquinavir. PIs treatment caused profound changes in the conidial ultrastructure as shown by transmission electron microscopy, including invaginations in the cytoplasmic membrane, disorder and detachment of the cell wall, enlargement of fungi cytoplasmic vacuoles, and abnormal cell division. The synergistic action on growth ability between nelfinavir and amphotericin B, when both were used at sub-inhibitory concentrations, was also observed. PIs reduced the adhesion and endocytic indexes during the interaction between conidia and epithelial cells (CHO), fibroblasts or macrophages, in a cell type-dependent manner. Moreover, PIs interfered with the conidia into mycelia transformation when in contact with CHO and with the susceptibility killing by macrophage cells. CONCLUSIONS/SIGNIFICANCE: Overall, by providing the first evidence that HIV PIs directly affects F. pedrosoi development and virulence, these data add new insights on the wide-spectrum efficacy of HIV PIs, further arguing for the potential chemotherapeutic targets for aspartyl-type peptidase produced by this human pathogen

    Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod

    Full text link
    Current optical detection schemes for single molecules require light absorption, either to produce fluorescence or direct absorption signals. This severely limits the range of molecules that can be detected, because most molecules are purely refractive. Metal nanoparticles or dielectric resonators detect non-absorbing molecules by a resonance shift in response to a local perturbation of the refractive index, but neither has reached single-protein sensitivity. The most sensitive plasmon sensors to date detect single molecules only when the plasmon shift is amplified by a highly polarizable label or by a localized precipitation reaction on the particle's surface. Without amplification, the sensitivity only allows for the statistical detection of single molecules. Here we demonstrate plasmonic detection of single molecules in realtime, without the need for labeling or amplification. We monitor the plasmon resonance of a single gold nanorod with a sensitive photothermal assay and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art plasmon sensors. We find that the sensitivity of the sensor is intrinsically limited due to spectral diffusion of the SPR. We believe this is the first optical technique that detects single molecules purely by their refractive index, without any need for photon absorption by the molecule. The small size, bio-compatibility and straightforward surface chemistry of gold nanorods may open the way to the selective and local detection of purely refractive proteins in live cells

    Intracellular optical probing with gold nanostars

    Get PDF

    Silver(I) 1,10-Phenanthroline Complexes Are Active against Fonsecaea Pedrosoi Viability and Negatively Modulate Its Potential Virulence Attributes

    Get PDF
    The genus Fonsecaea is one of the etiological agents of chromoblastomycosis (CBM), a chronic subcutaneous disease that is difficult to treat. This work aimed to evaluate the effects of copper(II), manganese(II) and silver(I) complexes coordinated with 1,10-phenanthroline (phen)/1,10- phenanthroline-5,6-dione (phendione) on Fonsecaea spp. Our results revealed that most of these complexes were able to inhibit F. pedrosoi, F. monophora and F. nubica conidial viability with minimum inhibitory concentration (MIC) values ranging from 0.6 to 100 M. The most effective complexes against F. pedrosoi planktonic conidial cells, the main etiologic agent of CBM, were [Ag(phen)2]ClO4 and [Ag2(3,6,9-tdda)(phen)4].EtOH, (tdda: 3,6,9-trioxaundecanedioate), displaying MIC values equal to 1.2 and 0.6 M, respectively. These complexes were effective in reducing the viability of F. pedrosoi biofilm formation and maturation. Silver(I) tdda-phen, combined with itraconazole, reduced the viability and extracellular matrix during F. pedrosoi biofilm development. Moreover, both silver(I) complexes inhibited either metallo- or aspartic-type peptidase activities of F. pedrosoi as well as its conidia into mycelia transformation and melanin production. In addition, the complexes induced the production of intracellular reactive oxygen species in F. pedrosoi. Taken together, our data corroborate the antifungal action of metal-phen complexes, showing they represent a therapeutic option for fungal infections, including CBM

    Arctic polar stratospheric cloud measurements by means of a four wavelength depolarization lidar

    Get PDF
    A four wavelength depolarization backscattering lidar has been operated during the European Arctic Stratospheric Ozone Experiment (EASOE) in Sodankyl, in the Finnish Arctic. The lidar performed measurements during the months of December 1991, January, February and March 1992. The Finnish Meteorological Institute during the same period launched regularly three Radiosondes per day, and three Ozone sondes per week. Both Mt. Pinatubo aerosols and Polar Stratospheric Clouds were measured. The use of four wavelengths, respectively at 355 nm, 532 nm , 750 nm, and 850 nm permits an inversion of the lidar data to determine aerosol particle size. The depolarization technique permits the identification of Polar Stratospheric Clouds. Frequent correlation between Ozone minima and peaks in the Mt. Pinatubo aerosol maxima were detected. Measurements were carried out both within and outside the Polar Vortex

    BPS String Solutions in Non-Abelian Yang-Mills Theories and Confinement

    Full text link
    Starting from the bosonic part of N=2 Super QCD with a 'Seiberg-Witten' N=2 breaking mass term, we obtain string BPS conditions for arbitrary semi-simple gauge groups. We show that the vacuum structure is compatible with a symmetry breaking scheme which allows the existence of Z_k-strings and which has Spin(10) -> SU(5) x Z_2 as a particular case. We obtain BPS Z_k-string solutions and show that they satisfy the same first order differential equations as the BPS string for the U(1) case. We also show that the string tension is constant, which may cause a confining potential between monopoles increasing linearly with their distance.Comment: 11 pages, Latex. Minor changes to the text. Final version to appear in Phys. Rev.
    corecore