544 research outputs found
Non linear excess conductivity of BiSrCaCuO (n = 1,2), thin films
The suppression of excess conductivity with electric field is studied for
BiSrCaCuO ( = 1, 2) thin films. A pulse-probe
technique is used, which allows for an estimate of the sample temperature. The
characteristic electric field for fluctuations suppression is found well below
the expected value for all samples. For the material, a scaling of the
excess conductivity with electric field and temperature is obtained, similar to
the scaling under strong magnetic field
Thermal stress induces glycolytic beige fat formation via a myogenic state.
Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of β-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival
The Essential Role of Taxonomic Expertise in the Creation of DNA Databases for the Identification and Delimitation of Southeast Asian Ambrosia Beetle Species (Curculionidae: Scolytinae: Xyleborini)
DNA holds great potential for species identification and efforts to create a DNA database of all animals and plants currently contains >7.5 million sequences representing ~300,000 species. This promise of a universally applicable identification tool suggests that morphologically based tools and taxonomists will soon not have utility. Here we demonstrate that DNA-based identification is not reliable without the contributions of taxonomic experts. We use ambrosia beetles (Xyleborini), which are known for great diversity as well as global invasions and damage, as a test case. Recent xyleborine introductions have caused major economic and ecological losses, thus timely species identifications of new invaders are necessary. This need is hampered by a paucity of identification tools and a fauna that is only moderately documented. To help alleviate deficiencies in their identification, we created COI and CAD DNA barcode databases (490 and 429 specimens), representing over half of the known fauna of Southeast Asia (165/316 species). Taxonomic experts identified species based on original descriptions and type specimens. Tree, distance, and iterative methods were used to assess the identification and delimitation of species. High intra- and interspecific COI distances were observed for congeneric species and attributed to the beetle's inbreeding system. Neither of the two markers provided 100% identification success but with the neighbor-joining tree-based method, 80% of species were identified by both genes. As for species delimitation, an obvious barcode gap between intra- and interspecific differences was not observed. Correspondence between distance-based groups and morphology-based species was poor. In a demonstration of iterative taxonomy, we constructed parsimony-based phylogenies using COI and CAD sequences for two genera. Although not all clades were resolved or supported, we provided better explanations for species boundaries in light of morphological and DNA sequence differences. Confident species identifications demonstrated 10–12% COI and/or >2–3% CAD. Involvement of taxonomic experts from the start of this project was essential for the creation of a stable foundation for the DNA identification of xyleborine species. In general, their role in DNA barcoding cannot be underestimated and is further discussed.publishedVersio
Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis
Background: Cronobacter sakazakii and C. malonaticus can cause serious diseases especially in infants where they are associated with rare but fatal neonatal infections such as meningitis and necrotising enterocolitis.
Methods: This study used 104 whole genome sequenced strains, covering all seven species in the genus, to analyse capsule associated clusters of genes involved in the biosynthesis of the O-antigen, colanic acid, bacterial cellulose, enterobacterial common antigen (ECA), and a previously uncharacterised K-antigen.
Results: Phylogeny of the gnd and galF genes flanking the O-antigen region enabled the defining of 38 subgroups which are potential serotypes. Two variants of the colanic acid synthesis gene cluster (CA1 and CA2) were found which differed with the absence of galE in CA2. Cellulose (bcs genes) were present in all species, but were absent in C. sakazakii sequence type (ST) 13 and clonal complex (CC) 100 strains. The ECA locus was found in all strains. The K-antigen capsular polysaccharide Region 1 (kpsEDCS) and Region 3 (kpsMT) genes were found in all Cronobacter strains. The highly variable Region 2 genes were assigned to 2 homology groups (K1 and K2). C. sakazakii and C. malonaticus isolates with capsular type [K2:CA2:Cell+] were associated with neonatal meningitis and necrotizing enterocolitis. Other capsular types were less associated with clinical infections. Conclusion: This study proposes a new capsular typing scheme which identifies a possible important virulence trait associated with severe neonatal infections. The various capsular polysaccharide structures warrant further investigation as they could be relevant to macrophage survival, desiccation resistance, environmental survival, and biofilm formation in the hospital environment, including neonatal enteral feeding tubes
Duplication and Diversification of the Hypoxia-Inducible IGFBP-1 Gene in Zebrafish
Gene duplication is the primary force of new gene evolution. Deciphering whether a pair of duplicated genes has evolved divergent functions is often challenging. The zebrafish is uniquely positioned to provide insight into the process of functional gene evolution due to its amenability to genetic and experimental manipulation and because it possess a large number of duplicated genes.We report the identification and characterization of two hypoxia-inducible genes in zebrafish that are co-ortholgs of human IGF binding protein-1 (IGFBP-1). IGFBP-1 is a secreted protein that binds to IGF and modulates IGF actions in somatic growth, development, and aging. Like their human and mouse counterparts, in adult zebrafish igfbp-1a and igfbp-1b are exclusively expressed in the liver. During embryogenesis, the two genes are expressed in overlapping spatial domains but with distinct temporal patterns. While zebrafish IGFBP-1a mRNA was easily detected throughout embryogenesis, IGFBP-1b mRNA was detectable only in advanced stages. Hypoxia induces igfbp-1a expression in early embryogenesis, but induces the igfbp-1b expression later in embryogenesis. Both IGFBP-1a and -b are capable of IGF binding, but IGFBP-1b has much lower affinities for IGF-I and -II because of greater dissociation rates. Overexpression of IGFBP-1a and -1b in zebrafish embryos caused significant decreases in growth and developmental rates. When tested in cultured zebrafish embryonic cells, IGFBP-1a and -1b both inhibited IGF-1-induced cell proliferation but the activity of IGFBP-1b was significantly weaker.These results indicate subfunction partitioning of the duplicated IGFBP-1 genes at the levels of gene expression, physiological regulation, protein structure, and biological actions. The duplicated IGFBP-1 may provide additional flexibility in fine-tuning IGF signaling activities under hypoxia and other catabolic conditions
Critical fluctuation conductivity in layered superconductors in strong electric field
The paraconductivity, originating from critical superconducting
order-parameter fluctuations in the vicinity of the critical temperature in a
layered superconductor is calculated in the frame of the self-consistent
Hartree approximation, for an arbitrarily strong electric field and zero
magnetic field. The paraconductivity diverges less steep towards the critical
temperature in the Hartree approximation than in the Gaussian one and it shows
a distinctly enhanced variation with the electric field. Our results indicate
that high electric fields can be effectively used to suppress order-parameter
fluctuations in high-temperature superconductors.Comment: 11 pages, 2 figures, to be published in Phys. Rev.
Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships
Due to the geographical location and paleobiogeography of the Canary Islands, the
seaweed flora contains macroalgae with different distributional patterns. In this contribution, the biogeographical relations of several new records of deep-water macroalgae recently collected around the Canarian archipelago are discussed. These are Bryopsidella neglecta (Berthotd) Rietema,Discosporangium mesarthrocarpum (Meneghini) Hauck, Hincksia onslowensis (Amsler et Kapraun)P.C. Silva, Syringoderma floridana Henry, Peyssonnelia harveyana J. Agardh, Cryptonemia seminervis(C. Agardh) J. Agardh, Botryodadia wynnei Ballantine, Gloiocladia blomquistii (Searles) R. E.Norris, PIahchrysis peltata (W. R. Taylor) P. Huv4 et H. Huv4, Leptofauchea brasiliensis Joly, and Sarcodiotheca divaricata W. R. Taylor. These new records, especially those in the Florideophyceae,support the strong affinity of the Canary Islands seaweed flora with the warm-temperate Mediterranean-Atlantic region. Some species are recorded for the first time from the east coast of the Atlantic Ocean, enhancing the biogeographic relations of the Canarian marine flora with that of the western Atlantic regions
Essential Role for miR-196a in Brown Adipogenesis of White Fat Progenitor Cells
Brown adipocytes can differentiate from white fat progenitor cells in mice exposed to cold or β3-adrenergic stimulation, and this process is regulated by a microRNA that regulates the expression of Hoxc8, a master regulator of brown adipogenesis
Identification of Prdm genes in human corneal endothelium
Corneal endothelial cells (CECs) are essential for maintaining corneal stromal hydration and ensuring its transparency, which is necessary for normal vision. Dysfunction of CECs leads to stromal decompensation, loss of transparency and corneal blindness. Corneal endothelium has low proliferative potential compared to surface epithelial cells leading to poor regeneration of CEC following injury. Additionally, the tissue exhibits age related decline in endothelial cell density with re-organisation of the cell layer, but no regeneration. The mechanisms which control proliferation and differentiation of neural crest derived CEC progenitors are yet to be clearly elucidated. Prdm (Positive regulatory domain) family of transcriptional regulators and chromatin modifiers are important for driving differentiation of a variety of cellular types. Many Prdm proteins are expressed in specific precursor cell populations and are necessary for their progression to a fully differentiated phenotype. In the present work, we sought to identify members of the Prdm gene family which are specifically expressed in human (h) CECs with a view to begin addressing their potential roles in CEC biology, focussing especially on Prdm 4 and 5 genes. By performing semi-quantitative reverse transcription coupled to PCR amplification we found that in addition to Prdm4 and Prdm5, Prdm2 and Prdm10 genes are expressed in hCECs. We further found that cultured primary hCECs or immortalised HCEC-12 cells express all of the Prdm genes found in CECs, but also express additional Prdm transcripts. This difference is most pronounced between Prdm gene expression patterns of CECs isolated from healthy human corneas and immortalised HCEC-12 cells. We further investigated Prdm 4 and Prdm 5 protein expression in cultured primary hCECs and HCEC-12 cells as well as in a human cadaveric whole cornea. Both Prdm 4 and Prdm 5 are expressed in human corneal endothelium, primary hCECs and in HCECs-
12 cells, characterised by expression of the Naþ/Kþ-ATPase. We observed that both proteins exhibit cytosolic (intracellular, but non-nuclear and distinct from extracellular fluid) as well as nuclear localisation within the endothelial layer, with Prdm 5 being more concentrated in the nuclei of the endothelial cells than Prdm 4. Thus, our work identifies novel Prdm genes specifically expressed in corneal
endothelial cells which may be important in the control of CEC differentiation and proliferation
- …