98 research outputs found

    Limb bone scaling in hopping diprotodonts and quadrupedal artiodactyls

    Get PDF
    Bone adaptation is modulated by the timing, direction, rate, and magnitude of mechanical loads. To investigate whether frequent slow, or infrequent fast, gaits could dominate bone adaptation to load, we compared scaling of the limb bones from two mammalian herbivore clades that use radically different high-speed gaits, bipedal hopping and quadrupedal galloping. Forelimb and hindlimb bones were collected from 20 artiodactyl and 15 diprotodont species (body mass M 1.05 - 1536 kg) and scanned in clinical computed tomography or X-ray microtomography. Second moment of area (Imax) and bone length (l) were measured. Scaling relations (y = axb) were calculated for l vs M for each bone and for Imax vs M and Imax vs l for every 5% of length. Imax vs M scaling relationships were broadly similar between clades despite the diprotodont forelimb being nearly unloaded, and the hindlimb highly loaded, during bipedal hopping. Imax vs l and l vs M scaling were related to locomotor and behavioural specialisations. Low-intensity loads may be sufficient to maintain bone mass across a wide range of species. Occasional high-intensity gaits might not break through the load sensitivity saturation engendered by frequent low-intensity gaits

    Predicting cortical bone adaptation to axial loading in the mouse tibia

    Get PDF
    The development of predictive mathematical models can contribute to a deeper understanding of the specific stages of bone mechanobiology and the process by which bone adapts to mechanical forces. The objective of this work was to predict, with spatial accuracy, cortical bone adaptation to mechanical load, in order to better understand the mechanical cues that might be driving adaptation. The axial tibial loading model was used to trigger cortical bone adaptation in C57BL/6 mice and provide relevant biological and biomechanical information. A method for mapping cortical thickness in the mouse tibia diaphysis was developed, allowing for a thorough spatial description of where bone adaptation occurs. Poroelastic finite-element (FE) models were used to determine the structural response of the tibia upon axial loading and interstitial fluid velocity as the mechanical stimulus. FE models were coupled with mechanobiological governing equations, which accounted for non-static loads and assumed that bone responds instantly to local mechanical cues in an on–off manner. The presented formulation was able to simulate the areas of adaptation and accurately reproduce the distributions of cortical thickening observed in the experimental data with a statistically significant positive correlation (Kendall's τ rank coefficient τ = 0.51, p < 0.001). This work demonstrates that computational models can spatially predict cortical bone mechanoadaptation to a time variant stimulus. Such models could be used in the design of more efficient loading protocols and drug therapies that target the relevant physiological mechanisms

    Spatial relationship between bone formation and mechanical stimulus within cortical bone: Combining 3D fluorochrome mapping and poroelastic finite element modelling

    Get PDF
    Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing ‘slice and view’3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow. Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies

    Altered lacunar and vascular porosity in osteogenesis imperfecta mouse bone as revealed by synchrotron tomography contributes to bone fragility

    No full text
    Osteogenesis imperfecta (brittle bone disease) is caused by mutations in the collagen genes and results in skeletal fragility. Changes in bone porosity at the tissue level indicate changes in bone metabolism and alter bone mechanical integrity. We investigated the cortical bone tissue porosity of a mouse model of the disease, oim, in comparison to a wild type (WT-C57BL/6), and examined the influence of canal architecture on bone mechanical performance.High-resolution 3D representations of the posterior tibial and the lateral humeral mid-diaphysis of the bones were acquired for both mouse groups using synchrotron radiation-based computed tomography at a nominal resolution of 700 nm. Volumetric morphometric indices were determined for cortical bone, canal network and osteocyte lacunae. The influence of canal porosity architecture on bone mechanics was investigated using microarchitectural finite element (?FE) models of the cortical bone. Bright-field microscopy of stained sections was used to determine if canals were vascular.Although total cortical porosity was comparable between oim and WT bone, oim bone had more numerous and more branched canals (p &lt; 0.001), and more osteocyte lacunae per unit volume compared to WT (p &lt; 0.001). Lacunae in oim were more spherical in shape compared to the ellipsoidal WT lacunae (p &lt; 0.001). Histology revealed blood vessels in all WT and oim canals. ?FE models of cortical bone revealed that small and branched canals, typical of oim bone, increase the risk of bone failure. These results portray a state of compromised bone quality in oim bone at the tissue level, which contributes to its deficient mechanical properties

    IPCP: Immersive Parallel Coordinates Plots for Engineering Design Processes

    Get PDF
    Computational engineering design methods and tools are common practice in modern industry. Such approaches are integral in enabling designers to efficiently explore larger and more complex design spaces. However, at the same time, computational engineering design methods tend to dramatically increase the number of candidate solutions that decision-makers must interpret in order to make appropriate choices within a set of solutions. Since all candidate solutions can be represented in digital form together with their assessment criteria, evaluated according to some sort of simulation model, a natural way to explore and understand the complexities of the design problem is to visualize their multidimensional nature. The task now involves the discovery of patterns and trends within the multidimensional design space. In this work, we aim to enhance the design decision-making process by embedding visual analytics into an immersive virtual reality environment. To this end, we present a system called IPCP: immersive parallel coordinates plots. IPCP combines the well-established parallel coordinates visualization technique for high-dimensional data with immersive virtual reality. We propose this approach in order to exploit and discover efficient means to use new technology within a conventional decision-making process. The aim is to provide benefits by enhancing visualizations of 3D geometry and other physical quantities with scientific information. We present the design of this system, which allows the representation and exploration of multidimensional scientific datasets. A qualitative evaluation with two surrogate expert users, knowledgeable in multidimensional data analysis, demonstrate that the system can be used successfully to detect both known and previously unknown patterns in a real-world test dataset, producing an early indicative validation of its suitability for decision support in engineering design processes.Cambridge European and Trinity Hall; Engineering and Physical Sciences Research Council (EPSRC-1788814

    Exploring aerospace design in virtual reality with dimension reduction

    Get PDF
    One of the today’s most propitious immersive technologies is virtual reality (VR). This term is colloquially associated with head-sets that transport users to a bespoke, built-forpurpose immersive 3D virtual environment. It has given rise to the field of immersive visual analytics—a new field of research that aims to use immersive technologies for enhancing and empowering data analytics. In this paper we present a VR aerospace design environment with the objective of aiding the component aerodynamic design process by interactively visualizing performance and geometry. This virtual environment uses ideas from parameter-space dimension reduction to enhance the exploration and exploitation of the design space. We decompose the design of such an environment into function structures, present an implementation of the system, and verify the interface in terms of usability and expressiveness

    Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    Get PDF
    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages

    An Investigation of the Mineral in Ductile and Brittle Cortical Mouse Bone

    Get PDF
    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size, composition, and structure are correlated with reduced mechanical integrity of bone

    Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation

    Get PDF
    Implantation of biodegradable scaffold is considered as a promising method to treat bone disorders, but knowledge of the dynamic bone repair process is extremely limited. In this study, based on the representative volume cell of a periodic scaffold, the influence of rehabilitation exercise duration per day on the bone repair was investigated by a computational framework. The framework coupled scaffold degradation and bone remodeling. The scaffold degradation was described by a function of stochastic hydrolysis independent of mechanical stimulation, and the bone formation was remodeled by a function of the mechanical stimulation, i.e., strain energy density. Then, numerical simulations were performed to study the dynamic bone repair process. The results showed that the scaffold degradation and the bone formation in the process were competitive. An optimal exercise duration per day emerged. All exercise durations promoted the bone maturation with a final Young's modulus of 1.9 ± 0.3 GPa. The present study connects clinical rehabilitation and fundamental research, and is helpful to understand the bone repair process and further design bone scaffold for bone tissue engineering
    corecore