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A B S T R A C T

Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we
investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine
tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing ‘slice and
view’ 3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity
or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map
acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and
peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were
created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow.
Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical
stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading
regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies.

1. Introduction

Though it has been recognized for centuries that bone adapts its
architecture in response to applied loads (Wolff, 1892), we still do not
understand how the process is spatially regulated. In particular, it is not
well known how the local mechanical environment correlates with re-
gions of bone apposition. Does bone adaptation occur where a parti-
cular mechanical stimulus is high? What is that mechanical stimulus?

We currently have limited understanding of the spatial regulation of
mechanoadaptation because: 1) it is challenging to accurately in-
vestigate a spatially and temporally varying mechanical field in the
bone during loading; and 2) it is difficult to identify regions of adap-
tation throughout the bone, when the amount of local bone formation
can be on the order of 10 μm or less. Previous studies have used a
combination of finite element modelling, in vivo microCT imaging, and

bone histomorphometry to correlate the mechanical environment and
regions of cortical bone formation (Webster et al., 2012; Razi et al.,
2015a; Moustafa et al., 2012; Birkhold et al., 2017; Gross et al., 1997;
Judex et al., 1997). In a mouse vertebral loading model, it was found
that strain energy density averaged within a cross-sectional regions of
cortical bone predicted regions of bone formation along the length of
the vertebrate (Webster et al., 2012). However, these studies did not
identify how bone adaptation and mechanical stimuli within a cross-
section related to each other in specific locations. In a turkey radius
loading model (Gross et al., 1997), peak circumferential strain gra-
dients (which closely relates to fluid flow), calculated with a finite
element modelling in 24 sectors of a single mid-diaphyseal section,
strongly correlated with the specific regions of periosteal bone forma-
tion while strain energy density did not. Similarly, peak strain gradients
correlated with sites of periosteal bone formation in an exercise-
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induced rooster model (Judex et al., 1997). More recently, in the mouse
tibial loading model, “4D” in-vivo microCT was used to identify regions
of bone formation and resorption from sequential in-vivo scans in a
region of interest spanning 5% of the tibial length (Birkhold et al.,
2015; Birkhold et al., 2016). For each modelling event, the principal
strains in that region (~10 μm) were determined from a finite element
model (Birkhold et al., 2016). Regions of bone formation correlated
with high principle strain at the periosteal surface, but not at the en-
dosteal surface (Razi et al., 2015a; Birkhold et al., 2016). Other studies
using the mouse tibial loading model concluded that there is no cor-
relation between regions of high peak longitudinal strain and bone
formation in tibial cortical bone when the stimuli was compared to
regions of bone formation in two specific histomorphometric sections
(37% and 75% of the bone length) (Moustafa et al., 2012).

These previous studies indicate a possible spatial relationship be-
tween local mechanical stimuli and cortical bone adaptation. However,
there are limitations in relying on in-vivo microCT with nominal iso-
tropic resolution of 10 μm to detect events occurring on the length scale
of 10 μm. Also, examining only a small portion of the bone or a few
cross-sectional areas, and only the periosteal surface limits the ability to
draw conclusions about the relationship between the mechanical en-
vironment and bone formation throughout the entire cortical bone. In
addition, previous studies only examined strain-dependent stimuli
(strain energy density, longitudinal strain, and principal strain), which
capture bone's sensitivity to load magnitude but not load rate, and do
not predict endocortical formation events, as the stimulus is maximum
on the outer surface. Time dependent stimuli (such as fluid velocity)
capture the rate-dependent effects, periosteal and endocortical bone
formation (Pereira et al., 2015) and are related to shear stresses at the
osteocytic level (Weinbaum et al., 1994; You et al., 2001). Thus, in this
study we use the murine tibial loading model to determine spatial re-
lationships between the mechanical environment and bone formation in
the tibial cortical bone. We examine both strain and fluid flow depen-
dent stimuli in a finite element model. Regions of bone formation are
detected with three-dimensional imaging of fluorochrome labels in a
novel slice-and-view technique for cortical bone histomorphometry.
The mechanical stimuli (strain energy density or fluid velocity) are
compared visually and quantitatively to regions of bone formation.

2. Materials and methods

2.1. In-vivo tibial loading model

The right leg of five female C57BL/6 mice (22 week old, Charles
River Company, UK) was loaded with a custom tibial loading rig (De
Souza et al., 2005). The left leg was not loaded and used as control. In
this study, trapezoidal load cycles were applied for 0.1 s, with a peak
load of 12 N and a rest period of 10 s, using a regime of 40 cycles a day,
3 times a week for 2 weeks (De Souza et al., 2005). Calcein was ad-
ministered intraperitoneally once (on day 5), which was about one-
third of the way through the experimental period (14 days). Mice were
sacrificed on day 15. Mice were maintained under standard laboratory
conditions and experiments were conducted in compliance with the
ARRIVE (Animal Research: Reporting of In Vivo Experiments) guide-
lines for reporting. Briefly, mice were housed up to 4 per cage in
polypropylene cages with wood chip and paper bedding and provided
standard rodent maintenance diet (Special Diet Services, South
Witham, UK) and water ad libitum throughout the study. All procedures
complied with the UK Animals (Scientific Procedures) Act 1986 and
were reviewed and approved by UK Home Office and local ethics
committee of the Royal Veterinary College (London, UK).

2.2. Strain map on the bone surface using digital image correlation

Right and left tibiae of the five mice subjected to the mechanical
loading protocol were considered. Tibiae were exposed by removing soft

tissues, and a thin layer of matt, water-based, white paint with sub-
sequent matt, acrylic, black ink speckles was applied using a high pre-
cision air brush (Carriero et al., 2014). Speckles were randomly dis-
tributed with a 45% black/white density and dots of about 8 pixels in
diameter (Carriero et al., 2014). Legs were inserted in the loading cups
and loaded to 12 N to replicate the load in vivo (Instron 5800, High
Wycombe, UK) while two CCD cameras (100mm lenses, GOM GmbH,
Germany) mounted on a tripod recorded images of the medial side of the
tibiae surface with a resolution of 7.5×10.9 μm at 1N interval (GOM
GmbH, Germany) (Carriero et al., 2014). Square facets (19×19 pixels)
with 15 pixels step facet were used for the post-processing of the images
using ARAMIS 5M System (GOM GmbH, Germany) (Carriero et al.,
2014). Paired images were taken in the undeformed state to determine
the amount of experimental error (noise), and the surface of each tibia
were imaged at least two times to demonstrate repeatable strain fields.
These ex-vivo strain maps determined strain magnitudes and distribution
patterns in mature tibiae with and without prior adaptation to applied
load (right and left tibia, respectively). Peak and average strain at 12 N
on the medial surface of the control non-adapted (left) leg and the load
adapted (right) leg were calculated, averaged across the specimens of
each group, and statistically compared. Homogeneity of variance and
normality of the variables were assessed using the Levene's test and the
Shapiro-Wilk test, respectively (SPSS, IBM, Somers, NY, USA). Difference
between the two groups was assessed using paired t-test. Statistical sig-
nificance was set at p < 0.05.

2.3. Bone architecture using 3D Micro-Computed Tomography

After determination of surface strains across the entire tibia by DIC,
bones were dissected and scanned by microCT at 10 μm resolution.
Images were acquired using a Skysan 1172 micro-CT system (Skyscan,
Kontich, Belgium) with the x-ray tube operated at 50 kV, 200 μA,
1600ms exposure time with a 0.5 mm aluminium filter and a focal spot
size of 5 μm. The microCT images were imported into image-processing
software (Mimics V15, Materialise, Leuven, Belgium). Tibiae were
segmented, (with fibula removed from the image) and aligned along
their longitudinal axis. Minimum moment of area (Imin,) along the ti-
bial diaphysis was determined using ImageJ (Schneider et al., 2012;
Pereira, 2014). We previously determined Imin was more sensitive to
regions of adaptation than Imax because of the location of regions of
adaptation and in relation to the principle axes (Pereira, 2014). The
longitudinal distance between the proximal and distal tibia-fibula
junctions were normalised for all bones.

Cross-sectional morphology from microCT of the loaded and un-
loaded tibiae identified general regions along the length of the bone
where adaptation occurred. Box plots were used to represent the
minimum moment of area along the entire length of the tibia. Statistical
significant difference between load adapted and control leg was con-
sidered when no overlap exists between the confidence interval (CI) of
the blocks of the two groups.

2.4. Location of bone formation using 3D fluorochrome mapping

Loaded and control tibiae of one mouse were then fixed and em-
bedded in an opaque methyl-methacrylate (PMMA) containing Sudan
Black dye (2%) to preserve calcein labels and provide an opaque em-
bedding material to block out fluorescence behind the plane of imaging.
Each embedded bone block was then mounted in the “histocutter”
(Fig. 1) that allows serial cutting (Leica RM-2265 Microtome) and ima-
ging (Nikon AZ-100 Fluorescence Microscope) of the ‘block face’ in order
to create a 3D histological reconstruction (3.3× projection lens, zoom 2,
4.585mm field of view), similar to what 3D techniques used for trabe-
cular bone in other groups (Kazakia et al., 2007; Bigley et al., 2008; Goff
et al., 2012; Goff et al., 2014; Matheny et al., 2013; Slyfield et al., 2009;
Slyfield et al., 2012a; Slyfield et al., 2012b; Tkachenko et al., 2009). The
microscope was equipped with a wheel with multiple emission filters
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(Nikon, UK) to allow imaging at different wavelengths so that different
fluorescence labels and ultraviolet light can be captured from the cut face
after each serial section. We used green (excitation 460–500 nm and
emission 510–560 nm) and ultraviolet (excitation 348–383 nm and
emission 420–480 nm) filter cubes, to allow for the visualization of cal-
cein label and mineralized bone, respectively. A CCD camera (Apogee
Alta U16M) imaged each serial face in a ‘slice and view’ routine, gen-
erating a stack of 2D images. The process was optimized so that images
had reasonable resolution and processing time was convenient for the
entire mouse tibia to be scanned. Images were collected with a nominal
resolution of 1.591 μm in the lateral direction and 5 μm in the axial di-
rection, corresponding to the slice cut thickness. Approximately 3000
images were acquired per filter per tibia, requiring 20 h of imaging ac-
quisition for one bone. They were then processed using ImageJ
(Schneider et al., 2012) and reconstructed to make a 3D map of bone
formation with Amira (FEI Corporation, USA). These were then com-
pared to the strain map on the bone and its morphology from the mi-
croCT analysis for both control non-adapted and load adapted legs.

2.5. 3D strain maps and location of bone formation using finite element
modelling

Fluid-flow in the lacunar-canalicular porosity is thought to be the
prime actuator triggering anabolic mechanotransductive pathways on
bone cells (Weinbaum et al., 1994). Poroelastic theory can provide
predictions of lacunar-canalicular fluid flow velocity at a continuum
level. In previous predictive studies of bone adaptation of the mouse
tibia to axial loading, we showed that load-induced fluid velocity is an
accurate mechanical indicator of local remodelling activity in an 8week
old mouse (Pereira et al., 2015). We used similar poroelastic finite-
element models in this study to estimate strains and fluid flow velocities
experienced by a 22week old mouse tibial bone during axial loading.

A four-node tetrahedral surface mesh was imported from Mimics
into Abaqus/CAE (v6.12, ABAQUS Inc., Pawtucket, RI, USA). A volume
mesh was computed and a convergence study on the mesh density was
performed (Pereira, 2014). Elements with a pore pressure degree of
freedom were considered to account for fluid flow inside the lacunar-

canalicular space. Periosteal and endosteal membranes were modeled
as element layers with isotropic and elastic material properties similar
to fibrous tissue (Lacroix and Prendergast, 2002). A periosteal Darcy
permeability of 10−17 m2, as measured by Evans et al. (2013), was used
in both membrane layers, i.e. periosteal and endosteal surfaces were
assumed to have the same permeability (Pereira et al., 2015). Material
properties of the bone and cartilage compartments were assigned as
described by Pereira et al. (2015) (Tables S1 and S2).

Loading conditions were determined from a study by Poulet et al.
(2011) where microCT imaging was employed to visualize the knee
joint during axial loading. Axial load was simulated as concentrated
forces distributed on a set of nodes at the proximal condyles. The loads
resulted in a total of 12 N applied as a single trapezoidal load cycle. A
set of nodes at the distal interior articular surface was fixed. Half a
second of total time period was calculated, with solver time step set to
0.005 s. Two stimuli were examined: strain energy density and fluid
velocity. Fluid velocity magnitude was calculated using standard soils
consolidation formulations and Darcy's law in which fluid velocity is
proportional to the gradient of pore pressure. For each stimulus we
compared the amount of stimulus with the bone formation regions from
the 3D fluorochrome mapping.

2.6. Quantification of simulations accuracy in predicting 3D bone formation

To compare regions of bone formation with the mechanical sti-
mulus, 2D spatial maps quantifying the amount of bone formation and
mechanical stimuli were generated. The 3D tibiae from the histocutter
and the finite element model were registered together. Between the
proximal and distal fibular junctions, each tibia was “unwrapped” into
a polar representation with a line to the centroid of the fibula at 0°. By
considering 45 8° pies along the long axis of the bone, calcein label
intensity and peak fluid velocity representing location of bone forma-
tion during mechano-adaptation on the periosteal and endosteal sur-
faces were calculated on each bone cross-section by averaging the value
on each surface within each angular wedge. Each of these values con-
stituted (i) a point in the plot of the average fluorochrome intensity or
stimulus vs. polar coordinate frame for each slice, and (ii) a pixel value

Fig. 1. Schematic of the automatic imaging acquisi-
tion and bone reconstruction used during 3D fluor-
ochrome mapping. The histocutter is a combination
of the microtome for automatic cutting and a fluor-
escence microscope for image acquisition. The
fluorescence microscope has UV, green, and red
emission filters. A grey scale CCD camera positioned
behind the fluorescence microscope captures the
fluorescence light emitted by the sample. The dis-
tance between the camera and the exposed surface is
fixed to ensure a constant focus through a series of
slicing and imaging process. An in-house custom
written code synchronizes the microtome action,
filter wheels, shutters, and the camera operation for
capturing the imaging that is then sent to a hard disk
for storage. In this study, we used a 3.3-x objective
with a 1.591 μm in-plane resolution and a field of
view of 4.585mm. We imaged the bone sample using
an ultraviolet (UV) excitation filter (excitation 365,
emission 450; Nikon), the calcein fluorescence using
a green filter (excitation 480, emission 535; Nikon)
and alizarin red using a red filter (excitation 560,
emission 645; Nikon). About 3000 sections were
imaged at a distance of 5 um for each bone, thus
collecting 6000 images. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)
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in the 2D spatial map of the bone formation on the endosteal and
periosteal surface from either the fluorochrome images or the FE esti-
mated mechanical stimulus. The qualitative comparison of these maps
allowed the investigation of spatial association between regions of bone
formation and mechanical stimulus.

3. Results

3.1. Digital image correlation

The spatial strain distribution over the medial side of the tibia was
measured, and only the strain variation in the axial (loading) direction is
reported as transverse and shear strains had relatively low magnitude in
comparison (Fig. 2A). Similar to our previous studies in 8 (Sztefek et al.,
2010), and 12 and 18week (Carriero et al., 2014) old males, the 22week
old female control non-adapted tibiae exhibited non-uniform load-induced
surface strain fields (Fig. 2A), with tension on the medial side and com-
pression on the lateral side. Local regions of high strain (>0.5%) were
seen on the medial side of the control non-adapted tibiae. Load-related
tissue strain significantly decreased in the adapted leg after two weeks of
loading (Fig. 2B). The medial side of the control non-adapted tibia had a
peak and a mean strain of 0.571% ± 0.35 and 0.351% ± 0.03, respec-
tively. These decreased following in-vivo adaptation after 2weeks of

applied loading to 0.411% ± 0.23 and 0.225% ± 0.04.
The noise was consistent throughout all the tests and was approxi-

mately 0.03%. No failure during the load was observed, as the load-
deformation curve was similar during each repeated loading episode.

3.2. Micro-Computed Tomography

MicroCT scans of the right (load adapted) and left (non-adapted)
legs were compared for cross-sectional properties along the length of
the bone. Imin was significantly larger in the load adapted tibia com-
pared to the control non-adapted bone, particularly over the proximal
20–40% tibial length (Fig. 3). Very few differences were found in the
distal portion of the tibia.

3.3. 3D fluorochrome mapping

We obtained high resolution imaging of bone adaptation for our
22 week-old mouse bones. Video S1 in the supplementary material
shows the regions of bone adaptation highlighted with green and the
bone image from the ultraviolet signal in grey along the entire bone
length for the load adapted and the non-adapted tibial bone. The stacks
of 2D images were then reconstructed in 3D composite images (Fig. 4)
to reveal regions of bone formation (calcein labels) overlaid on the
unprocessed ultraviolet signal. In the non-adapted tibia there is very
little, mostly endosteal, cortical bone formation. In the loaded tibia,
bone adaptation occurred on the medial and lateral sides of the en-
docortical surface (Fig. 5) and on the proximal half of the periosteal
surface (Fig. 4). Trabecular remodelling is seen in the loaded and un-
loaded legs (Fig. 4).

Fig. 2. (A) The strain map on the bone surface at 12 N of load assessed with a DIC system
on a representative control and loaded 22 week-old mouse tibia (images for the load
adapted tibia are reflected to allow a direct comparison with those of the control, non-
loaded tibia). (B) Peak and average strain measured on the bone surface of 5 control and 5
loaded samples at 12 N. (⁎ indicates p < 0.001).

Fig. 3. Boxplot representation of the 22 w.o. mouse tibial second moment of area about
the minor axis (Imin) of the control (blue) and loaded (red) legs as a function of the
normalised diaphysial length between the fibular insertions. Imin of the non-adapted leg
was used to normalize the ΔImin. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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3.4. Finite element modelling

Fig. 6 reports the strain map on the entire tibia of a 22 week-old
mouse obtained from the finite element analysis. The distribution of
longitudinal strains is in close agreement with those obtained ex-vivo
with the DIC, with a high tensile strain peak forming on the medial
surface of the bone. In contrast, the lateral side of the tibia shows high
compressive strain, similar to those already encountered in our pre-
vious experimental studies on tibiae from 10week-old mice (Sztefek
et al., 2010). However, the magnitude of the strain is somewhat lower
than those measured by our experimental DIC results, most likely be-
cause of the homogeneity of materials and loading assumptions of our
model. In this study the relative patterns of strain are of primary in-
terest, the absolute magnitude is less critical.

Fig. 7 shows the magnitude of strain energy density and fluid

velocity across the tibial bone geometry at the time of peak loading
(t=0.025 s). Regions of high strain energy density are only located
periosteally, failing to predict the endosteal bone formation induced by
loading of the tibia (Fig. 5). Regions of high fluid velocity are, instead,
present in the medial central part of the tibia and along the lateral crest
of the bone, also where we demonstrate bone formation to be located in
the 3D fluorochrome mapping (Fig. 5).

3.5. Simulation accuracy

Fig. 8 reports colour maps of average calcein intensity from the 3D
fluorochrome mapping and the average peak fluid velocity obtained
from the computational modelling of mechano-adaptation on the en-
dosteal and periosteal surfaces. Our mapping shows agreement in the
location of bone adaption on both endosteal and periosteal surfaces,

Fig. 4. 3D reconstruction of a representative 22 w.o. mouse tibia
bone (in grey) from a control (unloaded leg) and a loaded leg
showing the calcein label on the medial and lateral surface of the
bone (in green). The calcein label here depicts where bone has
been formed only on the external surface of the bone, in two
week's time frame in the control leg and in the leg loaded with our
regime. These models are made of about 3000 histological slices
(raw images) per fluorescence filter stacked together to make a 3D
composite image of the bone and of its calcein label showing ex-
actly where bone formation is happening without relying on any
registration algorithm. Images for the loaded leg are reflected to
allow a direct comparison with those from the control leg. (For
interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Bone histomorphometry slices showing re-
gions of bone adaptation and FEM slices showing
regions of high stimulus taken at 3 locations at the
mid-shaft of the bone (tibial bone is in grey and bone
growth is represented in green). Bone fluorescence
mapping of the same mouse tibiae represented in 3D
in Fig. 4 and Fig. 7 shows the bone formation on the
endosteal and periosteal surfaces of the bone (image
resolution is 1.591 μm×1.591 μm×5 μm - images
for the loaded leg are reflected to allow a direct
comparison with those from the control leg). Regions
of high stimulus due to loading: strain energy density
(SED) only has high stimulus on the periosteal sur-
face, while regions of high fluid flow (FLVEL) are
both periosteally and endosteally. M and L indicate
the medial and lateral side of the tibia, respectively.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)
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with the majority of the bone formation (stimulus) on the lateral side
(around 0°), very little bone formation (stimulus) anterior or posterior
(± 90°), and moderate bone formation (stimulus) medially (180°).

4. Discussion

This work uses a combination of novel high-resolution techniques to
investigate the spatial distribution of the bone mechano-adaptative
response on the entire cortex by directly visualizing the locations of
bone formation in a murine tibia loading model using 3D fluorochrome
mapping. Here, we further determine the relation between regions of
bone adaptation and locations of high mechanical stimuli (i.e. strain
energy density and fluid flow) assessed using FE computational models
experimentally validated with DIC bone surface strain mapping ex-vivo.
Our results show that in adult mouse (i) bone adapts to loads along its
entire length on both the endosteal and periosteal surface, and (ii) high
fluid flow is able to predict formation of bone on both these surfaces,

while high strain energy density can predict bone formation only
periosteally. Providing clues to the biophysical stimuli to which bone
responds, future studies can use this knowledge to develop loading
protocols that direct bone adaptation to a specific site.

Previous studies using the tibial loading model and 4D microCT in
adult mice found bone adaptation on both periosteum and endosteum,
with greater bone formation on the endosteal surface (Birkhold et al.,
2017; Birkhold et al., 2016), in agreement with our study. However,
these studies only investigated the association of bone adaptation to
strain driven mechanical stimuli and concluded that bone adapts at the
periosteal surface in locations of high principal strains while it adapts at
the endosteal surface in locations of low principal strains. In this study
we investigated both strain and fluid flow driven mechanical stimuli
and found a good spatial agreement between regions of new bone
formation (i.e. average calcein intensity) and peak of fluid velocity
predicted with FE models on both endosteal and periosteal surfaces.
Previous studies found similar results when examining the correlation
between mechanical stimuli and bone formation on the periosteal sur-
face in a single cross-section of the bone (Gross et al., 1997; Judex et al.,
1997). Here, we are able to predict the spatial association of fluid flow
with bone formation on its entire length and on both periosteal and
endosteal surface. In this study peak strain energy density was only able
to predict periosteal bone formation. When comparing experimental
data vs. computational prediction of bone formation, we do not expect
exact one-to-one mapping as the bone in the FE model is necessarily
different (a control leg) than the bone used for histological imaging of
adaptation (a loaded leg). Therefore, it would not be appropriate to
quantify the exact spatial correlation of two different bones. Instead we
focus on regions of adaptation longitudinally and circumferentially in
both the periosteum and endosteum.

In our fluid flow FE modelling we predicted bone formation peri-
osteally, showing a similar trend of our periosteal labels (Fig. 8D),
which was present (as evidenced on the composite full bone image in
Fig. 4) but interestingly were very weak compared to the endosteal
labels. In standard histomorphometry the intensity of the label is not
taken into account and only considered as present or absent. In peri-
osteal adaptation figures (Fig. 8C–D) the intensity of the adaptation
pattern does not match, although they show similar trend, indicating
strong adaptation along the length at 0° (the lateral surface). To make
the FEA prediction reflect more accurately the periosteal label, we
could decrease periosteal permeability, which would limit periosteal
fluid flow and amount of predicted adaptation. Future studies will be
needed to further investigate membrane permeability in bone

Fig. 6. The strain map on the bone surface at 12 N of load assessed using a finite element
model of a representative control 22 w.o. mouse tibia bone, with homogeneous isotropic
material properties, have similar distribution as the strain obtained experimentally using
DIC (Fig. 2A).

Fig. 7. 3D representation of the location of new bone formation
(in green) on a representative 22 w.o. mouse tibia bone (in grey)
from a control (unloaded leg) due to strain energy density (SED)
fluid flow (FLVEL) stimulus elicited by the strain distribution at
12 N represented in Fig. 2. The calcein label here depicts where
bone has been formed only on the external, medial and lateral,
surface of the bone. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 8. (A) Single cross-section of the tibia with the fibula for the bones used for the load adapted fluorochrome mapping and the bone used for the finite element modelling. The image
shows the construction of the polar coordinate system where the 0° corresponds to the axis connecting the center of the fibula and the center of the tibia. (B) Average calcein density and
average peak fluid flow velocity on the endosteal surface calculated in each 8° pie along the radial direction for the cross-sections of bones reported in (A). Each point value corresponds to
the average value calculate in a radius of 0.1 mm around the surface line. (C–D) 2D “unwrapped” bone formation maps along the tibia-fibula junctions for the 3D fluorochrome and the
fluid flow FE model on the endosteal and periosteal surface, respectively. The orange lines on the endosteal bone formation maps indicate the values calculated for the cross-section in (A).
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experimentally, and define the role of permeability on the prediction of
bone formation due to loading using histomorphometry. However, the
general regions of adaptation are spatially predicted by our model.

The combination of the techniques here utilized for the study of
bone adaptation is very innovative and powerful. Our study is the first
to use DIC strain mapping, FEA prediction of mechanical stimulus, and
3D fluorochrome mapping of bone formation to determine spatial re-
lations between the mechanical environment in the bone and cortical
adaptation. These methods are a significant advance over the standard
measurements, in which the mechanical stimuli is characterized by a
strain gauge measurement and bone formation amounts are measured
in a single histological slice at mid-shaft. Previous studies have ex-
amined correlations of mechanical stimuli and bone formation within a
single cross-section (Gross et al., 1997; Judex et al., 1997) or in only a
small section of cortical bone (Razi et al., 2015a) and only a few of
these examined endosteal bone formation. These previous studies often
used stimuli insensitive to loading rate and frequency (such as strain
energy density) (Moustafa et al., 2012; Patel et al., 2014; Razi et al.,
2015b; Yang et al., 2014), which limits the ability to determine spatial
and temporal influences on adaptation. We demonstrate here that when
the finite element model is validated and mechanical parameters other
than strain magnitude are examined, the regions of bone formation are
predicted by the local fluid velocity especially at the endosteal surface,
which is not captured by strain-dependent stimuli.

Standard microCT analyses of cross-sectional parameters, which are
typically reported in adaptation studies (De Souza et al., 2005; Holguin
et al., 2014; Main et al., 2014; Poole et al., 2012; Robling et al., 2002;
Weatherholt et al., 2013; Willinghamm et al., 2010), indicate regions
along the tibia cortex where bone formation is high, but do not indicate
where within the cross-section these adaptations occur. Recent studies
have registered bone in the loaded limb with the contralateral non-
loaded limb at each cross-section (Pereira et al., 2015) or with previous
in-vivo scans of the same bone (Birkhold et al., 2015; Birkhold et al.,
2014; de Bakker et al., 2015; Silva et al., 2012; Lambers et al., 2012;
Schulte et al., 2011; Lukas et al., 2013). However, these methods are
limited by the accuracy of the registration, radiation exposure, and the
resolution of the scan (de Bakker et al., 2015; Lan et al., 2013). 3D
fluorochrome mapping allows direct visualization of regions of active
bone formation on the entire mouse tibia at a very high resolution. The
resolution used in our 3D fluorochrome mapping is much higher
(1.591 μm for our images) than the resolution used in in-vivo microCT-
based histomorphometry (10 μm), thus we are able to more accurately
identify small regions of bone formation. In this study on adult mice we
show the results from only one fluorescence label and the UV channel
for natural collagen fluorescence; however, we demonstrate the possi-
bility of a multi-label usage in our preliminary data (Fig. 1). The use of
multiple labels, such as alizarin red or orange XO, is also possible if
injected at different time frames during the treatment period. Future
studies will explore the optimisation of these multiple labeling methods
for 3D histomorphometry.

3D fluorochrome mapping is not a high through-put technique. Here
we demonstrate the technique on a representative pair of bones (loaded
and unloaded), resulting in the equivalent of over 3000 histological
sections per each bone. Large fields of view (entire bone) at high re-
solution (1.5 μm) necessarily come at the cost number of samples
analyzed. Here we use histological sections of one entire bone to re-
present adaptation in the tibial loading model. Traditionally studies
have used a single histological section to represent the adaptation in the
entire bone, but used multiple animals. To obtain spatial mapping of
bone adaptation, it is critical to have a full map. Analyzing multiple
bones with 3D fluorochrome mapping will be a necessary next step to
understand spatial reproducibility of bone adaptation. However, ana-
lysis of multiple bones would not likely provide more information about
how regions of adaptation correlate with the mechanical environment.

One benefit of classic bone histomorphology is quantification of the
amounts of bone formed, the rates of bone formation, and the

percentage of active bone surface. In this study we did not quantify the
amount of bone formation, which is given by the distance of two con-
secutive labels. We were limited by only one label, which is fully suf-
ficient to see regions where bone is active. However, the single label
had a different thickness and intensity on the periosteal and endosteal
surface of the same bone, which may indicate regions of more (en-
dosteally) or less (periosteally) bone formation in the same bone
(Fig. 8C–D). In future work quantitative parameters of 3D bone for-
mation will be derived from double-labeling bones using this technique.

4.1. Conclusions

In this study we combined in-vivo tibial loading, DIC bone strain
maps, FE modelling, and 3D fluorochrome mapping of the murine tibia
to provide insight into the mechanical stimuli promoting the spatial
regulation of bone formation and osteogenic activity. Our results in-
dicate there is potential to eventually use targeted loading to increase
local bone fluid flow and direct bone formation to a defined region.
Understanding how to control, direct, and optimize spatial adaptation
of bone will help to inform therapy regimes for maintaining bone mass.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bonr.2018.02.003.

Acknowledgements

The authors would like to thank the Biotechnology and Biological
Science Research Council, UK (BB/I014608/1) for sponsoring this
study.

Competing interests

The authors have no conflict of interests.

References

de Bakker, C.M., et al., 2015. μCT-based, in vivo dynamic bone histomorphometry allows
3D evaluation of the early responses of bone resorption and formation to PTH and
alendronate combination therapy. Bone 73, 198–207.

Bigley, R.F., et al., 2008. Validity of serial milling-based imaging system for microdamage
quantification. Bone 42 (1), 212–215.

Birkhold, A.I., et al., 2014. Mineralizing surface is the main target of mechanical stimu-
lation independent of age: 3D dynamic in vivo morphometry. Bone 66, 15–25.

Birkhold, A.I., et al., 2015. Monitoring in vivo (re)modeling: a computational approach
using 4D microCT data to quantify bone surface movements. Bone 75, 210–221.

Birkhold, A.I., et al., 2016. The periosteal bone surface is less mechano-responsive than
the endocortical. Sci. Rep. 6, 23480.

Birkhold, A.I., et al., 2017. Tomography-based quantification of regional differences in
cortical bone surface remodeling and mechano-response. Calcif. Tissue Int. 100 (3),
255–270.

Carriero, A., et al., 2014. Ex vivo determination of bone tissue strains for an in vivo mouse
tibial loading model. J. Biomech. 47 (10), 2490–2497.

De Souza, R.L., et al., 2005. Non-invasive axial loading of mouse tibiae increases cortical
bone formation and modifies trabecular organization: a new model to study cortical
and cancellous compartments in a single loaded element. Bone 37 (6), 810–818.

Evans, S.F., et al., 2013. Periosteum, bone's "smart" bounding membrane, exhibits di-
rection-dependent permeability. J. Bone Miner. Res. 28 (3), 608–617.

Goff, M.G., et al., 2012. Three-dimensional characterization of resorption cavity size and
location in human vertebral trabecular bone. Bone 51 (1), 28–37.

Goff, M.G., et al., 2014. The effects of misalignment during in vivo loading of bone:
techniques to detect the proximity of objects in three-dimensional models. J.
Biomech. 47 (12), 3156–3161.

Gross, T.S., et al., 1997. Strain gradients correlate with sites of periosteal bone formation.
J. Bone Miner. Res. 12 (6), 982–988.

Holguin, N., et al., 2014. Aging diminishes lamellar and woven bone formation induced
by tibial compression in adult C57BL/6. Bone 65, 83–91.

Judex, S., Gross, T.S., Zernicke, R.F., 1997. Strain gradients correlate with sites of ex-
ercise-induced bone-forming surfaces in the adult skeleton. J. Bone Miner. Res. 12
(10), 1737–1745.

Kazakia, G.J., et al., 2007. Automated high-resolution three-dimensional fluorescence
imaging of large biological specimens. J. Microsc. 225 (Pt 2), 109–117.

Lacroix, D., Prendergast, P.J., 2002. A mechano-regulation model for tissue differentia-
tion during fracture healing: analysis of gap size and loading. J. Biomech. 35 (9),
1163–1171.

Lambers, F.M., et al., 2012. Longitudinal assessment of in vivo bone dynamics in a mouse
tail model of postmenopausal osteoporosis. Calcif. Tissue Int. 90 (2), 108–119.

A. Carriero et al. Bone Reports 8 (2018) 72–80

79

https://doi.org/10.1016/j.bonr.2018.02.003
https://doi.org/10.1016/j.bonr.2018.02.003
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0005
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0005
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0005
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0010
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0010
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0015
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0015
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0020
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0020
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0025
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0025
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0030
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0030
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0030
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0035
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0035
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0040
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0040
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0040
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0045
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0045
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0050
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0050
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0055
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0055
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0055
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0060
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0060
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0065
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0065
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0070
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0070
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0070
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0075
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0075
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0080
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0080
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0080
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0085
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0085


Lan, S., et al., 2013. 3D image registration is critical to ensure accurate detection of
longitudinal changes in trabecular bone density, microstructure, and stiffness mea-
surements in rat tibiae by in vivo microcomputed tomography (μCT). Bone 56 (1),
83–90.

Lukas, C., et al., 2013. Mineralization kinetics in murine trabecular bone quantified by
time-lapsed in vivo micro-computed tomography. Bone 56 (1), 55–60.

Main, R.P., Lynch, M.E., van der Meulen, M.C., 2014. Load-induced changes in bone
stiffness and cancellous and cortical bone mass following tibial compression diminish
with age in female mice. J. Exp. Biol. 217 (Pt 10), 1775–1783.

Matheny, J.B., et al., 2013. Anti-resorptive agents reduce the size of resorption cavities: a
three-dimensional dynamic bone histomorphometry study. Bone 57 (1), 277–283.

Moustafa, A., et al., 2012. Mechanical loading-related changes in osteocyte sclerostin
expression in mice are more closely associated with the subsequent osteogenic re-
sponse than the peak strains engendered. Osteoporos. Int. 23 (4), 1225–1234.

Patel, T.K., Brodt, M.D., Silva, M.J., 2014. Experimental and finite element analysis of
strains induced by axial tibial compression in young-adult and old female C57Bl/6
mice. J. Biomech. 47 (2), 451–457.

Pereira, A.F., 2014. Cortical Bone Adaptation: A Finite-Element Study of the Mouse Tibia.
Imperial College London.

Pereira, A.F., et al., 2015. Predicting cortical bone adaptation to axial loading in the
mouse tibia. J. R. Soc. Interface 12 (110), 0590.

Poole, K.E., et al., 2012. Cortical thickness mapping to identify focal osteoporosis in
patients with hip fracture. PLoS One 7 (6), e38466.

Poulet, B., et al., 2011. Characterizing a novel and adjustable noninvasive murine joint
loading model. Arthritis Rheum. 63 (1), 137–147.

Razi, H., et al., 2015a. Aging leads to a dysregulation in mechanically driven bone for-
mation and resorption. J. Bone Miner. Res. 30 (10), 1864–1873.

Razi, H., et al., 2015b. Skeletal maturity leads to a reduction in the strain magnitudes
induced within the bone: a murine tibia study. Acta Biomater. 13, 301–310.

Robling, A.G., et al., 2002. Improved bone structure and strength after long-term me-
chanical loading is greatest if loading is separated into short bouts. J. Bone Miner.
Res. 17 (8), 1545–1554.

Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH image to ImageJ: 25 years of

image analysis. Nat. Methods 9 (7), 671–675.
Schulte, F.A., et al., 2011. In vivo micro-computed tomography allows direct three-di-

mensional quantification of both bone formation and bone resorption parameters
using time-lapsed imaging. Bone 48 (3), 433–442.

Silva, M.J., et al., 2012. Tibial loading increases osteogenic gene expression and cortical
bone volume in mature and middle-aged mice. PLoS One 7 (4), e34980.

Slyfield, C.R., et al., 2009. Three-dimensional surface texture visualization of bone tissue
through epifluorescence-based serial block face imaging. J. Microsc. 236 (1), 52–59.

Slyfield, C.R., et al., 2012a. Mechanical failure begins preferentially near resorption
cavities in human vertebral cancellous bone under compression. Bone 50 (6),
1281–1287.

Slyfield, C.R., et al., 2012b. Three-dimensional dynamic bone histomorphometry. J. Bone
Miner. Res. 27 (2), 486–495.

Sztefek, P., et al., 2010. Using digital image correlation to determine bone surface strains
during loading and after adaptation of the mouse tibia. J. Biomech. 43 (4), 599–605.

Tkachenko, E.V., et al., 2009. Voxel size and measures of individual resorption cavities in
three-dimensional images of cancellous bone. Bone 45 (3), 487–492.

Weatherholt, A.M., Fuchs, R.K., Warden, S.J., 2013. Cortical and trabecular bone adap-
tation to incremental load magnitudes using the mouse tibial axial compression
loading model. Bone 52 (1), 372–379.

Webster, D., et al., 2012. Experimental and finite element analysis of the mouse caudal
vertebrae loading model: prediction of cortical and trabecular bone adaptation.
Biomech. Model. Mechanobiol. 11 (1–2), 221–230.

Weinbaum, S., Cowin, S.C., Zeng, Y., 1994. A model for the excitation of osteocytes by
mechanical loading-induced bone fluid shear stresses. J. Biomech. 27 (3), 339–360.

Willinghamm, M.D., et al., 2010. Age-related changes in bone structure and strength in
female and male BALB/c mice. Calcif. Tissue Int. 86 (6), 470–483.

Wolff, J., 1892. Das Gaesetz der Transformation der Knocker. A. Hirschwald, Berlin.
Yang, H., et al., 2014. Characterization of cancellous and cortical bone strain in the in

vivo mouse tibial loading model using microCT-based finite element analysis. Bone
66, 131–139.

You, L., et al., 2001. A model for strain amplification in the actin cytoskeleton of os-
teocytes due to fluid drag on pericellular matrix. J. Biomech. 34 (11), 1375–1386.

A. Carriero et al. Bone Reports 8 (2018) 72–80

80

http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0090
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0090
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0090
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0090
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0095
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0095
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0100
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0100
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0100
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0105
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0105
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0110
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0110
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0110
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0115
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0115
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0115
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0120
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0120
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0125
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0125
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0130
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0130
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0135
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0135
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0140
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0140
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0145
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0145
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0150
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0150
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0150
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0155
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0155
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0160
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0160
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0160
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0165
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0165
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0170
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0170
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0175
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0175
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0175
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0180
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0180
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0185
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0185
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0190
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0190
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0195
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0195
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0195
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0200
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0200
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0200
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0205
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0205
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0210
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0210
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0215
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0220
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0220
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0220
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0225
http://refhub.elsevier.com/S2352-1872(18)30008-1/rf0225

	Spatial relationship between bone formation and mechanical stimulus within cortical bone: Combining 3D fluorochrome mapping and poroelastic finite element modelling
	Introduction
	Materials and methods
	In-vivo tibial loading model
	Strain map on the bone surface using digital image correlation
	Bone architecture using 3D Micro-Computed Tomography
	Location of bone formation using 3D fluorochrome mapping
	3D strain maps and location of bone formation using finite element modelling
	Quantification of simulations accuracy in predicting 3D bone formation

	Results
	Digital image correlation
	Micro-Computed Tomography
	3D fluorochrome mapping
	Finite element modelling
	Simulation accuracy

	Discussion
	Conclusions

	Acknowledgements
	Competing interests
	References




