102 research outputs found

    Incontinentia pigmenti presenting as hypodontia in a 3-year-old girl: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Incontinentia pigmenti or Bloch-Sulzberger syndrome is a rare X-linked dominant disease that mainly affects the skin, eyes, hair, central nervous system and teeth. The disease is predominant among women. Although dermatologic manifestations are among the most important aspects for the diagnosis of the syndrome, they are less damaging to the patient and do not require treatment. However, oral involvement characterized by hypodontia of deciduous and permanent teeth is important for the diagnosis and treatment of the patient.</p> <p>Case presentation</p> <p>We report the case of a 3-year-old girl with ophthalmologic and neurologic disturbances, cutaneous manifestations and hypodontia. Since the patient did not present more damaging manifestations such as neurologic and/or ophthalmologic problems, her most severe complications were related to dental anomalies. The importance of integrated dental treatment, which combines pediatric dentistry, orthodontics and conventional prosthesis, is emphasized.</p> <p>Conclusion</p> <p>Hypodontia is a frequent finding in incontinentia pigmenti, and dentists should be aware of this condition in order to help with the diagnosis.</p

    The claudin gene family: expression in normal and neoplastic tissues

    Get PDF
    BACKGROUND: The claudin (CLDN) genes encode a family of proteins important in tight junction formation and function. Recently, it has become apparent that CLDN gene expression is frequently altered in several human cancers. However, the exact patterns of CLDN expression in various cancers is unknown, as only a limited number of CLDN genes have been investigated in a few tumors. METHODS: We identified all the human CLDN genes from Genbank and we used the large public SAGE database to ascertain the gene expression of all 21 CLDN in 266 normal and neoplastic tissues. Using real-time RT-PCR, we also surveyed a subset of 13 CLDN genes in 24 normal and 24 neoplastic tissues. RESULTS: We show that claudins represent a family of highly related proteins, with claudin-16, and -23 being the most different from the others. From in silico analysis and RT-PCR data, we find that most claudin genes appear decreased in cancer, while CLDN3, CLDN4, and CLDN7 are elevated in several malignancies such as those originating from the pancreas, bladder, thyroid, fallopian tubes, ovary, stomach, colon, breast, uterus, and the prostate. Interestingly, CLDN5 is highly expressed in vascular endothelial cells, providing a possible target for antiangiogenic therapy. CLDN18 might represent a biomarker for gastric cancer. CONCLUSION: Our study confirms previously known CLDN gene expression patterns and identifies new ones, which may have applications in the detection, prognosis and therapy of several human cancers. In particular we identify several malignancies that express CLDN3 and CLDN4. These cancers may represent ideal candidates for a novel therapy being developed based on CPE, a toxin that specifically binds claudin-3 and claudin-4

    Human epidermal Langerhans cells express the tight junction protein claudin-1 and are present in human genetic claudin-1 deficiency (NISCH syndrome).

    No full text
    Claudin-1 (CLDN1) is a structural tight junction (TJ) protein and is expressed in differentiating keratinocytes and Langerhans cells in the epidermis. Our objective was to identify immunoreactive CLDN1 in human epidermal Langerhans cells and to examine the pattern of epidermal Langerhans cells in genetic human CLDN1 deficiency [neonatal ichthyosis, sclerosing cholangitis (NISCH) syndrome]. Epidermal cells from healthy human skin labelled with CLDN1-specific antibodies were analysed by confocal laser immunofluorescence microscopy and flow cytometry. Skin biopsy sections of two patients with NISCH syndrome were stained with an antibody to CD1a expressed on epidermal Langerhans cells. Epidermal Langerhans cells and a subpopulation of keratinocytes from healthy skin were positive for CLDN1. The gross number and distribution of epidermal Langerhans cells of two patients with molecularly confirmed NISCH syndrome, however, was not grossly altered. Therefore, CLDN1 is unlikely to play a critical role in migration of Langerhans cells (or their precursors) to the epidermis or their positioning within the epidermis. Our findings do not exclude a role of this TJ molecule once Langerhans cells have left the epidermis for draining lymph nodes

    Latrogenic 'genodermatoses' induced by targeted therapy

    No full text
    PMID 26041486International audienceno abstrac

    Challenges in Treating Genodermatoses: New Therapies at the Horizon.

    No full text
    Genodermatoses are rare inherited skin diseases that frequently affect other organs. They often have marked effects on wellbeing and may cause early death. Progress in molecular genetics and translational research has unravelled many underlying pathological mechanisms, and in several disorders with high unmet need, has opened the way for the introduction of innovative treatments. One approach is to intervene where cell-signaling pathways are dysregulated, in the case of overactive pathways by the use of selective inhibitors, or when the activity of an essential factor is decreased by augmenting a molecular component to correct disequilibrium in the pathway. Where inflammatory reactions have been induced by a genetically altered protein, another possible approach is to suppress the inflammation directly. Depending on the nature of the genodermatosis, the implicated protein or even on the particular mutation, to correct the consequences or the genetic defect, may require a highly personalised stratagem. Repurposed drugs, can be used to bring about a "read through" strategy especially where the genetic defect induces premature termination codons. Sometimes the defective protein can be replaced by a normal functioning one. Cell therapies with allogeneic normal keratinocytes or fibroblasts may restore the integrity of diseased skin and allogeneic bone marrow or mesenchymal cells may additionally rescue other affected organs. Genetic engineering is expanding rapidly. The insertion of a normal functioning gene into cells of the recipient is since long explored. More recently, genome editing, allows reframing, insertion or deletion of exons or disruption of aberrantly functioning genes. There are now several examples where these stratagems are being explored in the (pre)clinical phase of therapeutic trial programmes. Another stratagem, designed to reduce the severity of a given disease involves the use of RNAi to attenuate expression of a harmful protein by decreasing abundance of the cognate transcript. Most of these strategies are short-lasting and will thus require intermittent life-long administration. In contrast, insertion of healthy copies of the relevant gene or editing the disease locus in the genome to correct harmful mutations in stem cells is more likely to induce a permanent cure. Here we discuss the potential advantages and drawbacks of applying these technologies in patients with these genetic conditions. Given the severity of many genodermatoses, prevention of transmission to future generations remains an important goal including offering reproductive choices, such as preimplantation genetic testing, which can allow selection of an unaffected embryo for transfer to the uterus

    The Fate of Epidermal Tight Junctions in the stratum corneum: Their Involvement in the Regulation of Desquamation and Phenotypic Expression of Certain Skin Conditions.

    No full text
    We evaluated the presence of tight junction (TJ) remnants in the stratum corneum (SC) of in vitro reconstructed human epidermis and human skin explants subjected or not to an aggressive topical treatment with beta-lipohydroxy salicylic acid (LSA) for 24 h. LSA-treated samples showed an increased presence of TJ remnants in the two lowermost layers of the SC, as quantified with standard electron microscopy. The topical aggression-induced overexpression of TJ-like cell-cell envelope fusions may influence SC functions: (1) directly, through an enhanced cohesion, and (2) indirectly, by impeding accessibility of peripheral corneodesmosomes to extracellular hydrolytic enzymes and, thus, slowing down desquamation. Observations of ichthyotic epidermis in peeling skin disease (PSD; corneodesmosin deficiency; two cases) and ichthyosis hypotrichosis sclerosing cholangitis syndrome (IHSC/NISCH; absence of claudin-1; two cases) also demonstrated increased persistence of TJ-like intercellular fusions in pathological SC and contributed to the interpretation of the diseases' pathological mechanisms
    corecore