10,470 research outputs found

    The influence of self-citation corrections on Egghe's g index

    Full text link
    The g index was introduced by Leo Egghe as an improvement of Hirsch's index h for measuring the overall citation record of a set of articles. It better takes into account the highly skewed frequency distribution of citations than the h index. I propose to sharpen this g index by excluding the self-citations. I have worked out nine practical cases in physics and compare the h and g values with and without self-citations. As expected, the g index characterizes the data set better than the h index. The influence of the self-citations appears to be more significant for the g index than for the h index.Comment: 9 pages, 2 figures, submitted to Scientometric

    Phase diagram for interacting Bose gases

    Full text link
    We propose a new form of the inversion method in terms of a selfenergy expansion to access the phase diagram of the Bose-Einstein transition. The dependence of the critical temperature on the interaction parameter is calculated. This is discussed with the help of a new condition for Bose-Einstein condensation in interacting systems which follows from the pole of the T-matrix in the same way as from the divergence of the medium-dependent scattering length. A many-body approximation consisting of screened ladder diagrams is proposed which describes the Monte Carlo data more appropriately. The specific results are that a non-selfconsistent T-matrix leads to a linear coefficient in leading order of 4.7, the screened ladder approximation to 2.3, and the selfconsistent T-matrix due to the effective mass to a coefficient of 1.3 close to the Monte Carlo data

    The inner environment of Z~CMa: High-Contrast Imaging Polarimetry with NaCo

    Get PDF
    Context. Z\,CMa is a binary composed of an embedded Herbig Be and an FU Ori class star separated by ∼100\sim100 au. Observational evidence indicate a complex environment in which each star has a circumstellar disk and drives a jet, and the whole system is embedded in a large dusty envelope. Aims. We aim to probe the circumbinary environment of Z\,CMa in the inner 400 au in scattered light. Methods. We use high contrast imaging polarimetry with VLT/NaCo at HH and KsK_s bands. Results. The central binary is resolved in both bands. The polarized images show three bright and complex structures: a common dust envelope, a sharp extended feature previously reported in direct light, and an intriguing bright clump located 0\farcs3 south of the binary, which appears spatially connected to the sharp extended feature. Conclusions.We detect orbital motion when compared to previous observations, and report a new outburst driven by the Herbig star. Our observations reveal the complex inner environment of Z\,CMa with unprecedented detail and contrast.Comment: Accepted for publication in A&A Letter

    Monte-Carlo Simulations of the Dynamical Behavior of the Coulomb Glass

    Get PDF
    We study the dynamical behavior of disordered many-particle systems with long-range Coulomb interactions by means of damage-spreading simulations. In this type of Monte-Carlo simulations one investigates the time evolution of the damage, i.e. the difference of the occupation numbers of two systems, subjected to the same thermal noise. We analyze the dependence of the damage on temperature and disorder strength. For zero disorder the spreading transition coincides with the equilibrium phase transition, whereas for finite disorder, we find evidence for a dynamical phase transition well below the transition temperature of the pure system.Comment: 10 pages RevTeX, 8 Postscript figure

    Divergence Measure Between Chaotic Attractors

    Full text link
    We propose a measure of divergence of probability distributions for quantifying the dissimilarity of two chaotic attractors. This measure is defined in terms of a generalized entropy. We illustrate our procedure by considering the effect of additive noise in the well known H\'enon attractor. Comparison of two H\'enon attractors for slighly different parameter values, has shown that the divergence has complex scaling structure. Finally, we show how our approach allows to detect non-stationary events in a time series.Comment: 9 pages, 6 figure

    An Upper Limit on the Mass of the Circumplanetary Disk for DH Tau b

    Get PDF
    Indexación: Scopus.DH Tau is a young (sim;1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious Ha emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of 17.2 ± 1.7 MÅ, which gives a disk to star mass ratio of 0.014 (assuming the usual gas to dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42M⊕ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model, including heating of the circumplanetary disk by DH Tau b and DH Tau A, suggests that a mass-averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09M⊕ for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models.http://iopscience.iop.org/article/10.3847/1538-3881/aa74cd/met

    Breaking of ergodicity and long relaxation times in systems with long-range interactions

    Full text link
    The thermodynamic and dynamical properties of an Ising model with both short range and long range, mean field like, interactions are studied within the microcanonical ensemble. It is found that the relaxation time of thermodynamically unstable states diverges logarithmically with system size. This is in contrast with the case of short range interactions where this time is finite. Moreover, at sufficiently low energies, gaps in the magnetization interval may develop to which no microscopic configuration corresponds. As a result, in local microcanonical dynamics the system cannot move across the gap, leading to breaking of ergodicity even in finite systems. These are general features of systems with long range interactions and are expected to be valid even when the interaction is slowly decaying with distance.Comment: 4 pages, 5 figure

    Distribution of fractal dimensions at the Anderson transition

    Get PDF
    We investigated numerically the distribution of participation numbers in the 3d Anderson tight-binding model at the localization-delocalization threshold. These numbers in {\em one} disordered system experience strong level-to-level fluctuations in a wide energy range. The fluctuations grow substantially with increasing size of the system. We argue that the fluctuations of the correlation dimension, D2D_2 of the wave functions are the main reason for this. The distribution of these correlation dimensions at the transition is calculated. In the thermodynamic limit (L→∞L\to \infty) it does not depend on the system size LL. An interesting feature of this limiting distribution is that it vanishes exactly at D2max=1.83D_{\rm 2max}=1.83, the highest possible value of the correlation dimension at the Anderson threshold in this model
    • …
    corecore