20 research outputs found

    Gene Expression Profiles in Human and Mouse Primary Cells Provide New Insights into the Differential Actions of Vitamin D-3 Metabolites

    Get PDF
    1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1−/−), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1−/−. By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.Peer reviewe

    Experimental study on the temperature distribution in fluidised beds

    No full text
    Heat management problems often prevail in reactors when highly exothermic chemical reactions occur. In these situations, fluidised bed reactors are often preferred due to their excellent heat transfer capabilities. However, the design, scale-up and operation of these reactors is still challenging due to the complex hydrodynamics. To gain a better understanding on the heat transport in these reactors, the degree of temperature non-uniformity for several fluidisation regimes in a pseudo-2D fluidised bed was quantified using Infra-Red Thermography. The Probability Density Functions were obtained from the whole-field temperature data, which were quantified using the standard deviation, i.e. the width of the distribution, and skewness, i.e. the dominant temperatures in the distribution. Based on the heat loss data and bubble frequencies, the standard deviation and skewness are good indicators for the solids mixing behaviour for the studied fluidisation regimes. In addition, the effect of spout velocity on the thermal characteristics was studied. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Anticancer activity of VDR-coregulator inhibitor PS121912

    No full text
    PURPOSE: PS121912 has been developed as selective vitamin D receptor (VDR)–coregulator inhibitor starting from a high throughput screening campaign to identify new agents that modulate VDR without causing hypercalcemia. Initial antiproliferative effects of PS121912 were observed that are characterized herein to enable future in vivo investigation with this molecule. METHODS: Antiproliferation and apoptosis was determined using four different cancer cell lines (DU145, Caco2, HL-60, and SKOV3) in the presence of PS121912, 1,25-(OH)(2)D(3), or a combination of 1,25-(OH)(2)D(3) and PS121912. VDR si-RNA was used to identify the role of VDR during this process. The application of ChIP enabled us to determine the involvement of coregulator recruitment during transcription, which was investigated by rt-PCR with VDR target genes and those affiliated with cell cycle progression. Translational changes of apoptotic proteins were determined with an antibody array. The preclinical characterization of PS121912 include the determination of metabolic stability and CYP3A4 inhibition. RESULTS: PS121912 induced apoptosis in all four cancer cells, with HL-60 cells being the most sensitive. At sub-micromolar concentrations, PS121912 amplified the growth inhibition of cancer cells caused by 1,25-(OH)(2)D(3) without being antiproliferative by itself. A knockout study with VDR si-RNA confirmed the mediating role of VDR. VDR target genes induced by 1,25-(OH)(2)D(3) were down-regulated with the co-treatment of PS121912. This process was highly dependent on the recruitment of coregulators that in case of CYP24A1 was SRC2. The combination of PS121912 and 1,25-(OH)(2)D(3) reduced the presence of SRC2 and enriched the occupancy of corepressor NCoR at the promoter site. E2F transcription factor 1 and 4 were down-regulated in the presence of PS121912 and 1,25-(OH)(2)D(3) that in turn reduced the transcription levels of cyclin A and D thus arresting HL-60 cells in the S or G2/M phase. In addition, proteins with hematopietic functions such as cyclin-dependent kinase 6, histone deacetylase 9 and transforming growth factor beta 2 and 3 were down-regulated as well. Elevated levels of P21 and GADD45, in concert with cyclin D1 also mediated the antiproliferative response of HL-60 in the presence of 1,25-(OH)(2)D(3) and PS121912. Studies at higher concentration of P121912 identified a VDR-independent pathway of antiproliferation that included the enzymatic and transcriptional activation of caspase 3/7. CONCLUSION: Overall, we conclude that PS121912 behaves like a VDR antagonist at low concentrations but interacts with more targets at higher concentrations leading to apoptosis mediated by caspase 3/7 activation. In addition, PS121912 showed an acceptable metabolic stability to enable in vivo cancer studies
    corecore