17 research outputs found

    Marrow angiogenesis-associated factors as prognostic biomarkers in patients with acute myelogenous leukaemia

    Get PDF
    Bone marrow (BM) neoangiogenesis plays an important role in acute myelogenous leukaemia (AML), and depends on the interplay of members of the vascular endothelial growth factor (VEGF) and angiopoietin (Ang) families. We determined the marrow levels of seven molecules associated with angiogenesis in 52 AML patients before chemotherapy and 20 healthy controls: VEGF-A, VEGF/PlGF, VEGF-C, VEGF-D, Ang-1, Ang-2, and Tie-2. All the molecules were quantified using enzyme-linked immunosorbent assay (ELISA). Comparing to normal controls, the marrow levels of VEGF/PlGF, Ang-2, and Tie-2 were significantly higher, and those of VEGF-C and Ang-1 were significantly lower in the AML patients (P<0.001). A total of 31 patients were further subjected to survival analysis. Patients with lower Tie-2 (<26 ng ml−1) and Ang-2 levels (<4500 pg ml−1) displayed a survival advantage (P=0.037 and 0.042, respectively), same as patients with higher VEGF/PlGF (⩾1 pg ml−1) and VEGF-D levels (⩾350 pg ml−1) (P=0.020 and 0.016, respectively). An angio-index ((Ang-2 × Tie-2)/(VEGF/PlGF × VEGF-D)) was established and multivariate Cox regression analysis revealed that patients with higher angio-index values (⩾50) displayed poor prognosis (hazard ratio 5.91, 95% confidence interval 1.99–17.56; P=0.001). The angio-index is closely associated with the clinical outcome of AML patients and may be valuable in disease prognosis

    A human monoclonal IgE antibody defines a highly allergenic fragment of the major timothy grass pollen allergen, Phl p 5: Molecular, immunological, and structural characterization of the epitope-containing domain

    No full text
    Almost 90% of grass pollen-allergic patients are sensitized against group 5 grass pollen allergens. We isolated a monoclonal human IgE Fab out of a combinatorial library prepared from lymphocytes of a grass pollen-allergic patient and studied its interaction with group 5 allergens. The IgE Fab cross-reacted with group 5A isoallergens from several grass and corn species. By allergen gene fragmentation we mapped the binding site of the IgE Fab to a 11.2-kDa N-terminal fragment of the major timothy grass pollen allergen Pld p 5A. The IgE Fab-defined Phl p 5A fragment was expressed in Escherichia coli and purified to homogeneity. Circular dichroism analysis revealed that the rPhl p 5A domain, as well as complete rPld p 5A, assumed a folded conformation consisting predominantly of an a helical secondary structure, and exhibited a remarkable refolding capacity. It reacted with serum IgE from 76% of grass pollen-allergic patients and revealed an extremely high allergenic activity in basophil histamine release as well as skin test experiments. Thus, the rPhl p 5A domain represents an important allergen domain containing several IgE epitopes in a configuration optimal for efficient effector cell activation. We suggest the rPhl p 5A fragment and the corresponding IgE Fab as paradigmatic tools to explore the structural requirements for highly efficient effector cell activation and, perhaps later, for the development of generally applicable allergen-specific therapy strategies
    corecore