337 research outputs found

    Measurement of the 18Ne(a,p_0)21Na reaction cross section in the burning energy region for X-ray bursts

    Full text link
    The 18Ne(a,p)21Na reaction provides one of the main HCNO-breakout routes into the rp-process in X-ray bursts. The 18Ne(a,p_0)21Na reaction cross section has been determined for the first time in the Gamow energy region for peak temperatures T=2GK by measuring its time-reversal reaction 21Na(p,a)18Ne in inverse kinematics. The astrophysical rate for ground-state to ground-state transitions was found to be a factor of 2 lower than Hauser-Feshbach theoretical predictions. Our reduced rate will affect the physical conditions under which breakout from the HCNO cycles occurs via the 18Ne(a,p)21Na reaction.Comment: 5 pages, 3 figures, accepted for publication on Physical Review Letter

    Probing Nuclear forces beyond the drip-line using the mirror nuclei 16^{16}N and 16^{16}F

    Get PDF
    Radioactive beams of 14^{14}O and 15^{15}O were used to populate the resonant states 1/2+^+, 5/2+^+ and 0−,1−,2−0^-,1^-,2^- in the unbound 15^{15}F and 16^{16}F nuclei respectively by means of proton elastic scattering reactions in inverse kinematics. Based on their large proton spectroscopic factor values, the resonant states in 16^{16}F can be viewed as a core of 14^{14}O plus a proton in the 2s1/2_{1/2} or 1d5/2_{5/2} shell and a neutron in 1p1/2_{1/2}. Experimental energies were used to derive the strength of the 2s1/2_{1/2}-1p1/2_{1/2} and 1d5/2_{5/2}-1p1/2_{1/2} proton-neutron interactions. It is found that the former changes by 40% compared with the mirror nucleus 16^{16}N, and the second by 10%. This apparent symmetry breaking of the nuclear force between mirror nuclei finds explanation in the role of the large coupling to the continuum for the states built on an ℓ=0\ell=0 proton configuration.Comment: 6 pages, 3 figures, 2 tables, accepted for publication as a regular article in Physical Review

    New pathway to bypass the 15O waiting point

    Full text link
    We propose the sequential reaction process 15^{15}O(pp,Îł)(ÎČ+\gamma)(\beta^{+})16^{16}O as a new pathway to bypass of the 15^{15}O waiting point. This exotic reaction is found to have a surprisingly high cross section, approximately 1010^{10} times higher than the 15^{15}O(pp,ÎČ+\beta^{+})16^{16}O. These cross sections were calculated after precise measurements of energies and widths of the proton-unbound 16^{16}F low lying states, obtained using the H(15^{15}O,p)15^{15}O reaction. The large (p,Îł)(ÎČ+)(p,\gamma)(\beta^{+}) cross section can be understood to arise from the more efficient feeding of the low energy wing of the ground state resonance by the gamma decay. The implications of the new reaction in novae explosions and X-ray bursts are discussed.Comment: submitte

    Coulomb excitation of 68^{68}Ni at safe energies

    Get PDF
    The B(E2;0+→2+)B(E2;0^+\to2^+) value in 68^{68}Ni has been measured using Coulomb excitation at safe energies. The 68^{68}Ni radioactive beam was post-accelerated at the ISOLDE facility (CERN) to 2.9 MeV/u. The emitted γ\gamma rays were detected by the MINIBALL detector array. A kinematic particle reconstruction was performed in order to increase the measured c.m. angular range of the excitation cross section. The obtained value of 2.8−1.0+1.2^{+1.2}_{-1.0} 102^2 e2^2fm4^4 is in good agreement with the value measured at intermediate energy Coulomb excitation, confirming the low 0+→2+0^+\to2^+ transition probability.Comment: 4 pages, 5 figure

    Coulomb excitation of 73Ga

    Full text link
    The B(E2; Ii -> If) values for transitions in 71Ga and 73Ga were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of 71,73Ga at the REX-ISOLDE on-line isotope mass separator facility. The emitted gamma rays were detected by the MINIBALL-detector array and B(E2; Ii->If) values were obtained from the yields normalized to the known strength of the 2+ -> 0+ transition in the 120Sn target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity towards lower excitation energy when adding neutrons beyond N = 40. This supports conclusions from previous studies of the gallium isotopes which indicated a structural change in this isotopical chain between N = 40 and N = 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-; 3/2- doublet near the ground state in 73 31Ga42 differing by at most 0.8 keV in energy

    First Results on In-Beam gamma Spectroscopy of Neutron-Rich Na and Mg Isotopes at REX-ISOLDE

    Full text link
    After the successful commissioning of the radioactive beam experiment at ISOLDE (REX-ISOLDE) - an accelerator for exotic nuclei produced by ISOLDE - first physics experiments using these beams were performed. Initial experiments focused on the region of deformation in the vicinity of the neutron-rich Na and Mg isotopes. Preliminary results show the high potential and physics opportunities offered by the exotic isotope accelerator REX in conjunction with the modern Germanium gamma spectrometer MINIBALL.Comment: 7 pages, RNB6 conference contributio

    Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,Îł) in the ESR Storage Ring

    Get PDF
    © 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio

    Indirect study of 19Ne states near the 18F+p threshold

    Get PDF
    The early E < 511 keV gamma-ray emission from novae depends critically on the 18F(p,a)15O reaction. Unfortunately the reaction rate of the 18F(p,a)15O reaction is still largely uncertain due to the unknown strengths of low-lying proton resonances near the 18F+p threshold which play an important role in the nova temperature regime. We report here our last results concerning the study of the d(18F,p)19F(alpha)15N transfer reaction. We show in particular that these two low-lying resonances cannot be neglected. These results are then used to perform a careful study of the remaining uncertainties associated to the 18F(p,a)15O and 18F(p,g)19Ne reaction rates.Comment: 18 pages, 8 figures. Accepted in Nuclear Physics

    "Safe" Coulomb Excitation of 30Mg

    Full text link
    We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using 30Mg ions accelerated to an energy of 2.25 MeV/u together with a thin nat-Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation gamma ray yields the B(E2; 0+ -> 2+) value of 30Mg was determined to be 241(31) e2fm4. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope 30Mg lies still outside the ``island of inversion''
    • 

    corecore