9 research outputs found
Determinants of versican-V1 proteoglycan processing by the metalloproteinase ADAMTS5
Proteolysis of the Glu(441)-Ala(442) bond in the glycosaminoglycan (GAG) β domain of the versican-V1 variant by a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif (ADAMTS) proteases is required for proper embryo morphogenesis. However, the processing mechanism and the possibility of additional ADAMTS-cleaved processing sites are unknown. We demonstrate here that if Glu(441) is mutated, ADAMTS5 cleaves inefficiently at a proximate upstream site but normally does not cleave elsewhere within the GAGβ domain. Chondroitin sulfate (CS) modification of versican is a prerequisite for cleavage at the Glu(441)-Ala(442) site, as demonstrated by reduced processing of CS-deficient or chondroitinase ABC-treated versican-V1. Site-directed mutagenesis identified the N-terminal CS attachment sites Ser(507) and Ser(525) as essential for processing of the Glu(441)-Ala(442) bond by ADAMTS5. A construct including only these two GAG chains, but not downstream GAG attachment sites, was cleaved efficiently. Therefore, CS chain attachment to Ser(507) and Ser(525) is necessary and sufficient for versican proteolysis by ADAMTS5. Mutagenesis of Glu(441) and an antibody to a peptide spanning Thr(432)-Gly(445) (i.e. containing the scissile bond) reduced versican-V1 processing. ADAMTS5 lacking the C-terminal ancillary domain did not cleave versican, and an ADAMTS5 ancillary domain construct bound versican-V1 via the CS chains. We conclude that docking of ADAMTS5 with two N-terminal GAG chains of versican-V1 via its ancillary domain is required for versican processing at Glu(441)-Ala(442). V1 proteolysis by ADAMTS1 demonstrated a similar requirement for the N-terminal GAG chains and Glu(441). Therefore, versican cleavage can be inhibited substantially by mutation of Glu(441), Ser(507), and Ser(525) or by an antibody to the region of the scissile bond
Inter-α-inhibitor impairs TSG-6-induced hyaluronan cross-linking
Under inflammatory conditions and in the matrix of the cumulus-oocyte complex, the polysaccharide hyaluronan (HA) becomes decorated covalently with heavy chains (HCs) of the serum glycoprotein inter-α-inhibitor (IαI). This alters the functional properties of the HA as well as its structural role within extracellular matrices. The covalent transfer of HCs from IαI to HA is catalyzed by TSG-6 (tumor necrosis factor-stimulated gene-6), but TSG-6 is also known as a HA cross-linker that induces condensation of the HA matrix. Here, we investigate the interplay of these two distinct functions of TSG-6 by studying the ternary interactions of IαI and TSG-6 with well defined films of end-grafted HA chains. We demonstrate that TSG-6-mediated cross-linking of HA films is impaired in the presence of IαI and that this effect suppresses the TSG-6-mediated enhancement of HA binding to CD44-positive cells. Furthermore, we find that the interaction of TSG-6 and IαI in the presence of HA gives rise to two types of complexes that independently promote the covalent transfer of heavy chains to HA. One type of complex interacts very weakly with HA and is likely to correspond to the previously reported covalent HC·TSG-6 complexes. The other type of complex is novel and binds stably but noncovalently to HA. Prolonged incubation with TSG-6 and IαI leads to HA films that contain, in addition to covalently HA-bound HCs, several tightly but noncovalently bound molecular species. These findings have important implications for understanding how the biological activities of TSG-6 are regulated, such that the presence or absence of IαI will dictate its function
Versican Proteolysis by ADAMTS Proteases and Its Influence on Sex Steroid Receptor Expression in Uterine Leiomyoma
CONTEXT: Leiomyomas have abundant extracellular matrix (ECM), with upregulation of versican, a large proteoglycan.
OBJECTIVE: We investigated ADAMTS (a disintegrin-like and metalloprotease with thrombospondin type 1 motifs) protease-mediated versican cleavage in myometrium and leiomyoma and the effect of versican knockdown in leiomyoma cells.
DESIGN: We used quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and RNA in situ hybridization for analysis of myometrium, leiomyoma and immortalized myometrium and leiomyoma cells. Short interfering RNA (siRNA) was used to knockdown versican in leiomyoma cells.
SETTING: This study was performed in an academic laboratory.
PATIENTS: Study subjects were women with symptomatic or asymptomatic leiomyoma.
MAIN OUTCOME MEASURES: We quantified messenger RNAs (mRNAs) for versican splice variants. We identified ADAMTS-cleaved versican in myometrium and leiomyoma and ADAMTS messenger RNAs and examined the effect of VCAN siRNA on smooth muscle differentiation and expression of estrogen and progesterone receptors.
RESULTS: The women in the symptomatic group (n = 7) had larger leiomyoma (P = 0.01), heavy menstrual bleeding (P \u3c 0.01), and lower hemoglobin levels (P = 0.02) compared with the asymptomatic group (n = 7), but were similar in age and menopausal status. Versican V0 and V1 isoforms were upregulated in the leiomyomas of symptomatic versus asymptomatic women (P = 0.03 and P = 0.04, respectively). Abundant cleaved versican was detected in leiomyoma and myometrium, as well as in myometrial and leiomyoma cell lines. ADAMTS4 (P = 0.03) and ADAMTS15 (P = 0.04) were upregulated in symptomatic leiomyomas. VCAN siRNA did not effect cell proliferation, apoptosis, or smooth muscle markers, but reduced ESR1 and PR-A expression (P = 0.001 and P = 0.002, respectively).
CONCLUSIONS: Versican in myometrium, leiomyomas and in the corresponding immortalized cells is cleaved by ADAMTS proteases. VCAN siRNA suppresses production of estrogen receptor 1 and progesterone receptor-A. These findings have implications for leiomyoma growth