380 research outputs found
On Model-Based RIP-1 Matrices
The Restricted Isometry Property (RIP) is a fundamental property of a matrix
enabling sparse recovery. Informally, an m x n matrix satisfies RIP of order k
in the l_p norm if ||Ax||_p \approx ||x||_p for any vector x that is k-sparse,
i.e., that has at most k non-zeros. The minimal number of rows m necessary for
the property to hold has been extensively investigated, and tight bounds are
known. Motivated by signal processing models, a recent work of Baraniuk et al
has generalized this notion to the case where the support of x must belong to a
given model, i.e., a given family of supports. This more general notion is much
less understood, especially for norms other than l_2. In this paper we present
tight bounds for the model-based RIP property in the l_1 norm. Our bounds hold
for the two most frequently investigated models: tree-sparsity and
block-sparsity. We also show implications of our results to sparse recovery
problems.Comment: Version 3 corrects a few errors present in the earlier version. In
particular, it states and proves correct upper and lower bounds for the
number of rows in RIP-1 matrices for the block-sparse model. The bounds are
of the form k log_b n, not k log_k n as stated in the earlier versio
Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime
Simulations of neutron star-black hole (NSBH) binaries generally consider
black holes with masses in the range , where we expect to find
most stellar mass black holes. The existence of lower mass black holes,
however, cannot be theoretically ruled out. Low-mass black holes in binary
systems with a neutron star companion could mimic neutron star-neutron (NSNS)
binaries, as they power similar gravitational wave (GW) and electromagnetic
(EM) signals. To understand the differences and similarities between NSNS
mergers and low-mass NSBH mergers, numerical simulations are required. Here, we
perform a set of simulations of low-mass NSBH mergers, including systems
compatible with GW170817. Our simulations use a composition and temperature
dependent equation of state (DD2) and approximate neutrino transport, but no
magnetic fields. We find that low-mass NSBH mergers produce remnant disks
significantly less massive than previously expected, and consistent with the
post-merger outflow mass inferred from GW170817 for moderately asymmetric mass
ratio. The dynamical ejecta produced by systems compatible with GW170817 is
negligible except if the mass ratio and black hole spin are at the edge of the
allowed parameter space. That dynamical ejecta is cold, neutron-rich, and
surprisingly slow for ejecta produced during the tidal disruption of a neutron
star : . We also find that the final mass of the remnant
black hole is consistent with existing analytical predictions, while the final
spin of that black hole is noticeably larger than expected -- up to for our equal mass case
Exploring Outliers in Crowdsourced Ranking for QoE
Outlier detection is a crucial part of robust evaluation for crowdsourceable
assessment of Quality of Experience (QoE) and has attracted much attention in
recent years. In this paper, we propose some simple and fast algorithms for
outlier detection and robust QoE evaluation based on the nonconvex optimization
principle. Several iterative procedures are designed with or without knowing
the number of outliers in samples. Theoretical analysis is given to show that
such procedures can reach statistically good estimates under mild conditions.
Finally, experimental results with simulated and real-world crowdsourcing
datasets show that the proposed algorithms could produce similar performance to
Huber-LASSO approach in robust ranking, yet with nearly 8 or 90 times speed-up,
without or with a prior knowledge on the sparsity size of outliers,
respectively. Therefore the proposed methodology provides us a set of helpful
tools for robust QoE evaluation with crowdsourcing data.Comment: accepted by ACM Multimedia 2017 (Oral presentation). arXiv admin
note: text overlap with arXiv:1407.763
Sparsity and cosparsity for audio declipping: a flexible non-convex approach
This work investigates the empirical performance of the sparse synthesis
versus sparse analysis regularization for the ill-posed inverse problem of
audio declipping. We develop a versatile non-convex heuristics which can be
readily used with both data models. Based on this algorithm, we report that, in
most cases, the two models perform almost similarly in terms of signal
enhancement. However, the analysis version is shown to be amenable for real
time audio processing, when certain analysis operators are considered. Both
versions outperform state-of-the-art methods in the field, especially for the
severely saturated signals
A Novel Convex Relaxation for Non-Binary Discrete Tomography
We present a novel convex relaxation and a corresponding inference algorithm
for the non-binary discrete tomography problem, that is, reconstructing
discrete-valued images from few linear measurements. In contrast to state of
the art approaches that split the problem into a continuous reconstruction
problem for the linear measurement constraints and a discrete labeling problem
to enforce discrete-valued reconstructions, we propose a joint formulation that
addresses both problems simultaneously, resulting in a tighter convex
relaxation. For this purpose a constrained graphical model is set up and
evaluated using a novel relaxation optimized by dual decomposition. We evaluate
our approach experimentally and show superior solutions both mathematically
(tighter relaxation) and experimentally in comparison to previously proposed
relaxations
Estimating outflow masses and velocities in merger simulations:Impact of <i>r</i>-process heating and neutrino cooling
The determination of the mass, composition, and geometry of matter outflows
in black hole-neutron star and neutron star-neutron star binaries is crucial to
current efforts to model kilonovae, and to understand the role of neutron star
merger in r-process nucleosynthesis. In this manuscript, we review the simple
criteria currently used in merger simulations to determine whether matter is
unbound and what the asymptotic velocity of ejected material will be. We then
show that properly accounting for both heating and cooling during r-process
nucleosynthesis is important to accurately predict the mass and kinetic energy
of the outflows. These processes are also likely to be crucial to predict the
fallback timescale of any bound ejecta. We derive a model for the asymptotic
veloicity of unbound matter and binding energy of bound matter that accounts
for both of these effects and that can easily be implemented in merger
simulations. We show, however, that the detailed velocity distribution and
geometry of the outflows can currently only be captured by full 3D fluid
simulations of the outflows, as non-local effect ignored by the simple criteria
used in merger simulations cannot be safely neglected when modeling these
effects. Finally, we propose the introduction of simple source terms in the
fluid equations to approximately account for heating/cooling from r-process
nucleosynthesis in future seconds-long 3D simulations of merger remnants,
without the explicit inclusion of out-of-nuclear statistical equilibrium
reactions in the simulations.Comment: Accepted by Phys.Rev.
Innovations and technological comebacks
Motivated by the comeback of the vinyl, we explore the idea that the success of a third-generation technology (digital music) can have adverse effects on the second generation (CD) but positive effects on the first one (vinyl). This phenomenon arises in a market if the process of innovation is not transitive. In particular, we identify a condition such that the second generation completely substitutes the first one, the third generation completely substitutes the second one, but the first and the third generations have enough complementarities to coexist. Beyond the case of music industry, our model has implications on product positioning and product design
- …