23 research outputs found

    A re-evaluation of the kinetic equations for hyperbolic tight-binding inhibition.

    Get PDF
    (c) 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems October 9 - 15, 2006, Beijing, ChinaDigital Object Identifier : 10.1109/IROS.2006.282127A teleoperation system for controlling a robot with fast dynamics over the Internet has been constructed. It employs a predictive control structure with an accurate dynamic model of the robot to overcome problems caused by varying delays. The operator interface uses a stereo virtual reality display of the robot cell, and a haptic device for force feed-back including virtual obstacle avoidance forces

    Functional, fractal nonlinear response with application to rate processes with memory, allometry, and population genetics

    Get PDF
    We give a functional generalization of fractal scaling laws applied to response problems as well as to probability distributions. We consider excitations and responses, which are functions of a given state vector. Based on scaling arguments, we derive a general nonlinear response functional scaling law, which expresses the logarithm of a response at a given state as a superposition of the values of the logarithms of the excitations at different states. Such a functional response law may result from the balance of different growth processes, characterized by variable growth rates, and it is the first order approximation of a perturbation expansion similar to the phase expansion. Our response law is a generalization of the static fractal scaling law and can be applied to the study of various problems from physics, chemistry, and biology. We consider some applications to heterogeneous and disordered kinetics, organ growth (allometry), and population genetics. Kinetics on inhomogeneous reconstructing surfaces leads to rate equations described by our nonlinear scaling law. For systems with dynamic disorder with random energy barriers, the probability density functional of the rate coefficient is also given by our scaling law. The relative growth rates of different biological organs (allometry) can be described by a similar approach. Our scaling law also emerges by studying the variation of macroscopic phenotypic variables in terms of genotypic growth rates. We study the implications of the causality principle for our theory and derive a set of generalized Kramers–Kronig relationships for the fractal scaling exponents

    Enzyme catalysis as a chain reaction

    No full text

    Fisher's theorems for multivariable, time- and space-dependent systems, with applications in population genetics and chemical kinetics

    No full text
    We study different physical, chemical, or biological processes involving replication, transformation, and disappearance processes, as well as transport processes, and assume that the time and space dependence of the species densities are known. We derive two types of Fisher equations. The first type relates the average value of the time derivative of the relative time-specific rates of growth of the different species to the variance of the relative, time-specific rates of growth. A second type relates the average value of the gradient or the divergence of the relative, space-specific rates of growth to the space correlation matrix of the relative, space-specific rates of growth. These Fisher equations are exact results, which are independent of the detailed kinetics of the process: they are valid whether the evolution equations are linear or nonlinear, local or nonlocal in space and/or time and can be applied for the study of a large class of physical, chemical, and biological systems described in terms of time- and/or space-dependent density fields. We examine the implications of our generalized Fisher relations in population genetics, biochemistry, and chemical kinetics (reaction–diffusion systems). We show that there is a connection between the enhanced (hydrodynamic) transport of mutations induced by population growth and space-specific rate vectors: the velocity of enhanced transport is proportional to the product of the diffusion coefficient of the species and the space rate vector; this relation is similar to a fluctuation–dissipation relation in statistical mechanics

    Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids

    No full text
    Posttranslational modification of proteins with farnesyl and geranylgeranyl isoprenoids is a widespread phenomenon in eukaryotic organisms. Isoprenylation is conferred by three protein prenyltransferases: farnesyl transferase (FTase), geranylgeranyl transferase type-I (GGTase-I), and Rab geranylgeranyltransferase (RabGGTase). Inhibitors of these enzymes have emerged as promising therapeutic compounds for treatment of cancer, viral and parasite originated diseases, as well as osteoporosis. However, no generic nonradioactive protein prenyltransferase assay has been reported to date, complicating identification of enzyme-specific inhibitors. We have addressed this issue by developing two fluorescent analogues of farnesyl and geranylgeranyl pyrophosphates {3,7-dimethyl-8-(7-nitro-benzo[1,2,5]oxadiazol-4-ylamino)-octa-2,6-diene-1}pyrophosphate (NBD-GPP) and {3,7,11-trimethyl-12-(7-nitro-benzo[1,2,5]oxadiazo-4-ylamino)-dodeca-2,6,10-trien-1} pyrophosphate (NBD-FPP), respectively. We demonstrate that these compounds can serve as efficient lipid donors for prenyltransferases. Using these fluorescent lipids, we have developed two simple (SDS-PAGE and bead-based) in vitro prenylation assays applicable to all prenyltransferases. Using the SDS-PAGE assay, we found that, in contrast to previous reports, the tyrosine phosphatase PRL-3 may possibly be a dual substrate for both FTase and GGTase-I. The on-bead prenylation assay was used to identify prenyltransferase inhibitors that displayed nanomolar affinity for RabGGTase and FTase. Detailed analysis of the two inhibitors revealed a complex inhibition mechanism in which their association with the peptide binding site of the enzyme reduces the enzyme's affinity for lipid and peptide substrates without competing directly with their binding. Finally, we demonstrate that the developed fluorescent isoprenoids can directly and efficiently penetrate into mammalian cells and be incorporated in vivo into small GTPases
    corecore