17,620 research outputs found
Developmental and functional effects of steroid hormones on the neuroendocrine axis and spinal cord
This review highlights the principal effects of steroid hormones at central and peripheral levels in the neuroendocrine axis. The data discussed highlight the principal role of oestrogens and testosterone in hormonal programming in relation to sexual orientation, reproductive and metabolic programming, and the neuroendocrine mechanism involved in the development of polycystic ovary syndrome phenotype. Moreover, consistent with the wide range of processes in which steroid hormones take part, we discuss the protective effects of progesterone on neurodegenerative disease and the signalling mechanism involved in the genesis of oestrogen-induced pituitary prolactinomas.Fil: Zubeldia Brenner, Lautaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Roselli, C. E.. Oregon Health and Science University Portland; Estados UnidosFil: Recabarren, S. E.. Universidad de Concepción; ChileFil: Gonzalez Deniselle, Maria Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Lara, H. E.. Universidad de Chile; Chil
Structure Space of Model Proteins --A Principle Component Analysis
We study the space of all compact structures on a two-dimensional square
lattice of size . Each structure is mapped onto a vector in
-dimensions according to a hydrophobic model. Previous work has shown that
the designabilities of structures are closely related to the distribution of
the structure vectors in the -dimensional space, with highly designable
structures predominantly found in low density regions. We use principal
component analysis to probe and characterize the distribution of structure
vectors, and find a non-uniform density with a single peak. Interestingly, the
principal axes of this peak are almost aligned with Fourier eigenvectors, and
the corresponding Fourier eigenvalues go to zero continuously at the
wave-number for alternating patterns (). These observations provide a
stepping stone for an analytic description of the distribution of structural
points, and open the possibility of estimating designabilities of realistic
structures by simply Fourier transforming the hydrophobicities of the
corresponding sequences.Comment: 14 pages, 12 figures, Conclusion has been modifie
lHuman cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis
Effector-memory T cells expressing Fas (Apo-1/CD95) are switched to an apoptotic program by cross-linking with Fas-ligand (FasL). Consequently, tumors that express FasL can induce apoptosis of infiltrating Fas-positive T lymphocytes and subdue any antitumor host immune response. Since Epstein-Barr virus (EBV)-associated tumors such as Hodgkin lymphoma (HL) and nasopharyngeal carcinoma (NPC) express FasL, we determined whether EBV-specific cytotoxic T lymphocytes (EBV-CTLs) could be modified to resist this evasion strategy. We show that long-term down-modulation of Fas can be achieved in EBV-CTLs by transduction with small interfering RNA (siRNA) encoded in a retrovirus. Modified T cells resisted Fas/FasL-mediated apoptosis compared with control cells and showed minimal cleavage of the caspase3 substrate poly(ADP-ribose) polymerase (PARP) protein after Fas engagement. Prolonged Fas stimulation selected a uniformly Fas(low) and FasL resistant population. Removal of responsiveness to this single death signal had no other discernible effects on EBV-CTLs. In particular, it did not lead to their autonomous growth since the modified EBV-CTLs remained polyclonal, and their survival and proliferation retained dependence on antigen-specific stimulation and on the presence of other physiologic growth signals. EBV-CTLs with knocked down Fas should have a selective functional and survival advantage over unmodified EBV-CTLs in the presence of tumors expressing FasL and may be of value for adoptive cellular therapy. (c) 2005 by The American Society of Hematology
Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts
Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect
ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into
spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect
ratio. In this work we investigated the energetics and dynamical aspects of
CNBs formed from rolling up CNRs. We have carried out molecular dynamics
simulations using reactive empirical bond-order potentials. Our results show
that similarly to CNSs, CNBs formation is dominated by two major energy
contribution, the increase in the elastic energy due to the bending of the
initial planar configuration (decreasing structural stability) and the
energetic gain due to van der Waals interactions of the overlapping surface of
the rolled layers (increasing structural stability). Beyond a critical diameter
value these scrolled structures can be even more stable (in terms of energy)
than their equivalent planar configurations. In contrast to CNSs that require
energy assisted processes (sonication, chemical reactions, etc.) to be formed,
CNBs can be spontaneously formed from low temperature driven processes. Long
CNBs (length of 30.0 nm) tend to exhibit self-folded racket-like
conformations with formation dynamics very similar to the one observed for long
carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled
structures. Possible synthetic routes to fabricate CNBs from graphene membranes
are also addressed
Recommended from our members
Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling
Background— Transplantation of endothelial progenitor cells (EPCs) improves vascularization and left ventricular function after experimental myocardial ischemia. However, tissue distribution of transplanted EPCs has not yet been monitored in living animals. Therefore, we tested whether radioactive labeling allows us to detect injected EPCs
Motility of small nematodes in disordered wet granular media
The motility of the worm nematode \textit{Caenorhabditis elegans} is
investigated in shallow, wet granular media as a function of particle size
dispersity and area density (). Surprisingly, we find that the nematode's
propulsion speed is enhanced by the presence of particles in a fluid and is
nearly independent of area density. The undulation speed, often used to
differentiate locomotion gaits, is significantly affected by the bulk material
properties of wet mono- and polydisperse granular media for .
This difference is characterized by a change in the nematode's waveform from
swimming to crawling in dense polydisperse media \textit{only}. This change
highlights the organism's adaptability to subtle differences in local structure
and response between monodisperse and polydisperse media
Partial purification of tumour-specific transplantation antigens from methylcholanthrene-induced murine sarcomas by immobilized lectins.
Plasma membranes isolated from two immunogenic, non-cross-protecting, MC sarcomas were shown to retain the specific rejection antigens of whole cells as well as serologically detected H-2 antigens. Solubilization of the membranes with sodium deoxycholate gave quantitative release of H-2 and retained the rejection specificity of the tumour from which it was derived. Polyacrylamide-gel electrophoresis (PAGE) showed no extensive degradation of membrane components during solubilization. The solubilized TSTAs were further characterized and purified on columns of 4 different lectins immobilized on sepharose beads. TSTA from both tumours bound to WGA but not to Con A, LCH or RCA columns. Specific activity was retained after elution from the WGA column. Serologically detectable H-2 bound to the Con A and LCH columns only. Clear separation of H-2 from TSTA activity was thus obtained. Furthermore the WGA-binding material represents a source for further purification of TSTA molecules in order to explore the basis for their diversity
Additive Equivalence in Turbulent Drag Reduction by Flexible and Rodlike Polymers
We address the "Additive Equivalence" discovered by Virk and coworkers: drag
reduction affected by flexible and rigid rodlike polymers added to turbulent
wall-bounded flows is limited from above by a very similar Maximum Drag
Reduction (MDR) asymptote. Considering the equations of motion of rodlike
polymers in wall-bounded turbulent ensembles, we show that although the
microscopic mechanism of attaining the MDR is very different, the macroscopic
theory is isomorphic, rationalizing the interesting experimental observations.Comment: 8 pages, PRE, submitte
Transient down-regulation of beta1 integrin subtypes on kidney carcinoma cells is induced by mechanical contact with endothelial cell membranes
Adhesion molecules of the integrin beta1 family are thought to be involved in the malignant progression renal cell carcinoma (RCC). Still, it is not clear how they contribute to this process. Since the hematogenous phase of tumour dissemination is the rate-limiting step in the metastatic process, we explored beta1 integrin alterations on several RCC cell lines (A498, Caki1, KTC26) before and after contacting vascular endothelium in a tumour-endothelium (HUVEC) co-culture assay. Notably, alpha2, alpha3 and alpha5 integrins became down-regulated immediately after the tumour cells attached to HUVEC, followed by re-expression shortly thereafter. Integrin down-regulation on RCC cells was caused by direct contact with endothelial cells, since the isolated endothelial membrane fragments but not the cell culture supernatant contributed to the observed effects. Integrin loss was accompanied by a reduced focal adhesion kinase (FAK) expression, FAK activity and diminished binding of tumour cells to matrix proteins. Furthermore, intracellular signalling proteins RCC cells were altered in the presence of HUVEC membrane fragments, in particular 14-3-3 epsilon, ERK2, PKCdelta, PKCepsilon and RACK1, which are involved in regulating tumour cell motility. We, therefore, speculate that contact of RCC cells with the vascular endothelium converts integrin-dependent adhesion to integrin-independent cell movement. The process of dynamic integrin regulation may be an important part in tumour cell migration strategy, switching the cells from being adhesive to becoming motile and invasive
Pairwise alignment incorporating dipeptide covariation
Motivation: Standard algorithms for pairwise protein sequence alignment make
the simplifying assumption that amino acid substitutions at neighboring sites
are uncorrelated. This assumption allows implementation of fast algorithms for
pairwise sequence alignment, but it ignores information that could conceivably
increase the power of remote homolog detection. We examine the validity of this
assumption by constructing extended substitution matrixes that encapsulate the
observed correlations between neighboring sites, by developing an efficient and
rigorous algorithm for pairwise protein sequence alignment that incorporates
these local substitution correlations, and by assessing the ability of this
algorithm to detect remote homologies. Results: Our analysis indicates that
local correlations between substitutions are not strong on the average.
Furthermore, incorporating local substitution correlations into pairwise
alignment did not lead to a statistically significant improvement in remote
homology detection. Therefore, the standard assumption that individual residues
within protein sequences evolve independently of neighboring positions appears
to be an efficient and appropriate approximation
- …