Motivation: Standard algorithms for pairwise protein sequence alignment make
the simplifying assumption that amino acid substitutions at neighboring sites
are uncorrelated. This assumption allows implementation of fast algorithms for
pairwise sequence alignment, but it ignores information that could conceivably
increase the power of remote homolog detection. We examine the validity of this
assumption by constructing extended substitution matrixes that encapsulate the
observed correlations between neighboring sites, by developing an efficient and
rigorous algorithm for pairwise protein sequence alignment that incorporates
these local substitution correlations, and by assessing the ability of this
algorithm to detect remote homologies. Results: Our analysis indicates that
local correlations between substitutions are not strong on the average.
Furthermore, incorporating local substitution correlations into pairwise
alignment did not lead to a statistically significant improvement in remote
homology detection. Therefore, the standard assumption that individual residues
within protein sequences evolve independently of neighboring positions appears
to be an efficient and appropriate approximation