88 research outputs found

    Constraining a hybrid volatility basis-set model for aging of wood-burning emissions using smog chamber experiments : A box-model study based on the VBS scheme of the CAMx model (v5.40)

    Get PDF
    In this study, novel wood combustion aging experiments performed at different temperatures (263 and 288 K) in a ∼ 7 m³ smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol–chemistry box-model simulations with unprecedented measurements of non-traditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). Due to this, we are able to observationally constrain the amounts of different NTVOC aerosol precursors (in the model) relative to low volatility and semi-volatile primary organic material (OMsv_{sv}), which is partitioned based on current published volatility distribution data. By comparing the NTVOC ∕ OMsv_{sv} ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass-burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30 000 box-model simulations were performed to retrieve the combination of parameters that best fit the observed organic aerosol mass and O : C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O : C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ∼ 4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 h of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 1011^{-11} to 4. 0 × 1011^{-11} cm³ molec1^{-1} s1^{-1}. The average enthalpy of vaporization of secondary organic aerosol (SOA) surrogates was determined to be between 55 000 and 35 000 J mol1^{-1}, which implies a yield increase of 0.03-0.06 % K1^{-1} with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass-burning aerosols

    Modelling winter organic aerosol at the European scale with CAMx : evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments

    Get PDF
    We evaluated a modified VBS (volatility basis set) scheme to treat biomass-burning-like organic aerosol (BBOA) implemented in CAMx (Comprehensive Air Quality Model with extensions). The updated scheme was parameterized with novel wood combustion smog chamber experiments using a hybrid VBS framework which accounts for a mixture of wood burning organic aerosol precursors and their further functionalization and fragmentation in the atmosphere. The new scheme was evaluated for one of the winter EMEP intensive campaigns (February March 2009) against aerosol mass spectrometer (AMS) measurements performed at 11 sites in Europe. We found a considerable improvement for the modelled organic aerosol (OA) mass compared to our previous model application with the mean fractional bias (MFB) reduced from 61 to 29 %. We performed model-based source apportionment studies and compared results against positive matrix factorization (PMF) analysis performed on OA AMS data. Both model and observations suggest that OA was mainly of secondary origin at almost all sites. Modelled secondary organic aerosol (SOA) contributions to total OA varied from 32 to 88 % (with an average contribution of 62 %) and absolute concentrations were generally under-predicted. Modelled primary hydrocarbon-like organic aerosol (HOA) and primary biomass-burning-like aerosol (BBPOA) fractions contributed to a lesser extent (HOA from 3 to 30 %, and BBPOA from 1 to 39 %) with average contributions of 13 and 25 %, respectively. Modelled BBPOA fractions were found to represent 12 to 64 % of the total residential-heating-related OA, with increasing contributions at stations located in the northern part of the domain. Source apportionment studies were performed to assess the contribution of residential and non-residential combustion precursors to the total SOA. Non-residential combustion and road transportation sector contributed about 30-40 % to SOA formation (with increasing contributions at urban and near industrialized sites), whereas residential combustion (mainly related to wood burning) contributed to a larger extent, around 60-70 %. Contributions to OA from residential combustion precursors in different volatility ranges were also assessed: our results indicate that residential combustion gas-phase precursors in the semivolatile range (SVOC) contributed from 6 to 30 %, with higher contributions predicted at stations located in the southern part of the domain On the other hand, the oxidation products of higher-volatility precursors (the sum of intermediate-volatility compounds (IVOCs) and volatile organic compounds (VOCs)) contribute from 15 to 38 % with no specific gradient among the stations. Although the new parameterization leads to a better agreement between model results and observations, it still under predicts the SOA fraction, suggesting that uncertainties in the new scheme and other sources and/or formation mechanisms remain to be elucidated. Moreover, a more detailed characterization of the semivolatile components of the emissions is needed.Peer reviewe

    Role of ammonia in European air quality with changing land and ship emissions between 1990 and 2030

    Get PDF
    The focus of this modeling study is on the role of ammonia in European air quality in the past as well as in the future. Ammonia emissions have not decreased as much as the other secondary inorganic aerosol (SIA) precursors – nitrogen oxides (NOx) and sulfur dioxide (SO2) – since the 1990s and are still posing problems for air quality and the environment. In this study, air quality simulations were performed with a regional chemical transport model at decadal intervals between 1990 and 2030 to understand the changes in the chemical species associated with SIA under varying land and ship emissions. We analyzed the changes in air concentrations of ammonia, nitric acid, ammonium, particulate nitrate and sulfate as well as changes in the dry and wet deposition of ammonia and ammonium. The results show that the approximately 40 % decrease in SIA concentrations between 1990 and 2010 was mainly due to reductions in NOx and SO2 emissions. The ammonia concentrations on the other hand decreased only near the high-emission areas such as the Netherlands and northern Italy by about 30 %, while there was a slight increase in other parts of Europe. Larger changes in concentrations occurred mostly during the first period (1990–2000). The model results indicate a transition period after 2000 for the composition of secondary inorganic aerosols due to a larger decrease in sulfate concentrations than nitrate. Changes between 2010 and 2030 – assuming the current legislation (CLE) scenario – are predicted to be smaller than those achieved earlier for all species analyzed in this study. The scenario simulations suggest that if ship emissions will be regulated more strictly in the future, SIA formation will decrease especially around the Benelux area, North Sea, Baltic Sea, English Channel and the Mediterranean region, leaving more ammonia in the gas phase, which would lead to an increase in dry deposition. In the north of the domain, the decrease in SIA would be mainly due to reduced formation of particulate nitrate, while the change around the Mediterranean would be caused mainly by decreased sulfate aerosol concentrations. One should also keep in mind that potentially higher temperatures in the future might increase the evaporation of ammonium nitrate to form its gaseous components NH3 and HNO3. Sensitivity tests with reduced NOx and NH3 emissions indicate a shift in the sensitivity of aerosol formation from NH3 towards NOx emissions between 1990 and 2030 in most of Europe except the eastern part of the model domain.The focus of this modeling study is on the role of ammonia in European air quality in the past as well as in the future Ammonia emissions have not decreased as much as the other secondary inorganic aerosol (SIA) precursors - nitrogen oxides (NOx) and sulfur dioxide (SO2) - since the 1990s and are still posing problems for air quality and the environment. In this study, air quality simulations were performed with a regional chemical transport model at decadal intervals between 1990 and 2030 to understand the changes in the chemical species associated with SIA under varying land and ship emissions. We analyzed the changes in air concentrations of ammonia, nitric acid, ammonium, particulate nitrate and sulfate as well as changes in the dry and wet deposition of ammonia and ammonium. The results show that the approximately 40 % decrease in SIA concentrations between 1990 and 2010 was mainly due to reductions in NOx and SO2 emissions. The ammonia concentrations on the other hand decreased only near the high-emission areas such as the Netherlands and northern Italy by about 30 %, while there was a slight increase in other parts of Europe. Larger changes in concentrations occurred mostly during the first period (1990-2000). The model results indicate a transition period after 2000 for the composition of secondary inorganic aerosols due to a larger decrease in sulfate concentrations than nitrate. Changes between 2010 and 2030 - assuming the current legislation (CLE) scenario - are predicted to be smaller than those achieved earlier for all species analyzed in this study. The scenario simulations suggest that if ship emissions will be regulated more strictly in the future, SIA formation will decrease especially around the Benelux area, North Sea, Baltic Sea, English Channel and the Mediterranean region, leaving more ammonia in the gas phase, which would lead to an increase in dry deposition. In the north of the domain, the decrease in SIA would be mainly due to reduced formation of particulate nitrate, while the change around the Mediterranean would be caused mainly by decreased sulfate aerosol concentrations. One should also keep in mind that potentially higher temperatures in the future might increase the evaporation of ammonium nitrate to form its gaseous components NH3 and HNO3. Sensitivity tests with reduced NOx and NH3 emissions indicate a shift in the sensitivity of aerosol formation from NH3 towards NOx emissions between 1990 and 2030 in most of Europe except the eastern part of the model domain.Peer reviewe

    Effects of two different biogenic emission models on modelled ozone and aerosol concentrations in Europe

    Get PDF
    Biogenic volatile organic compound (BVOC) emissions are one of the essential inputs for chemical transport models (CTMs), but their estimates are associated with large uncertainties, leading to significant influence on air quality modelling. This study aims to investigate the effects of using different BVOC emission models on the performance of a CTM in simulating secondary pollutants, i.e. ozone, organic, and inorganic aerosols. European air quality was simulated for the year 2011 by the regional air quality model Comprehensive Air Quality Model with Extensions (CAMx) version 6.3, using BVOC emissions calculated by two emission models: the Paul Scherrer Institute (PSI) model and the Model of Emissions of Gases and Aerosol from Nature (MEGAN) version 2.1. Comparison of isoprene and monoterpene emissions from both models showed large differences in their general amounts, as well as their spatial distribution in both summer and winter. MEGAN produced more isoprene emissions by a factor of 3 while the PSI model generated 3 times the monoterpene emissions in summer, while there was negligible difference (∼4&thinsp;%) in sesquiterpene emissions associated with the two models. Despite the large differences in isoprene emissions (i.e. 3-fold), the resulting impact in predicted summertime ozone proved to be minor (&lt;10&thinsp;%; MEGAN O3 was higher than PSI O3 by ∼7&thinsp;ppb). Comparisons with measurements from the European air quality database (AirBase) indicated that PSI emissions might improve the model performance at low ozone concentrations but worsen performance at high ozone levels (&gt;60&thinsp;ppb). A much larger effect of the different BVOC emissions was found for the secondary organic aerosol (SOA) concentrations. The higher monoterpene emissions (a factor of ∼3) by the PSI model led to higher SOA by ∼110&thinsp;% on average in summer, compared to MEGAN, and lead to better agreement between modelled and measured organic aerosol (OA): the mean bias between modelled and measured OA at nine measurement stations using Aerodyne aerosol chemical speciation monitors (ACSMs) or Aerodyne aerosol mass spectrometers (AMSs) was reduced by 21&thinsp;%–83&thinsp;% at rural or remote stations. Effects on inorganic aerosols (particulate nitrate, sulfate, and ammonia) were relatively small (&lt;15&thinsp;%).</p

    Solar “brightening” impact on summer surface ozone between 1990 and 2010 in Europe – a model sensitivity study of the influence of the aerosol–radiation interactions

    Get PDF
    Surface solar radiation (SSR) observations have indicated an increasing trend in Europe since the mid-1980s, referred to as solar brightening. In this study, we used the regional air quality model, CAMx (Comprehensive Air Quality Model with Extensions) to simulate and quantify, with various sensitivity runs (where the year 2010 served as the base case), the effects of increased radiation between 1990 and 2010 on photolysis rates (with the PHOT1, PHOT2 and PHOT3 scenarios, which represented the radiation in 1990) and biogenic volatile organic compound (BVOC) emissions (with the BIO scenario, which represented the biogenic emissions in 1990), and their consequent impacts on summer surface ozone concentrations over Europe between 1990 and 2010. The PHOT1 and PHOT2 scenarios examined the effect of doubling and tripling the anthropogenic PM2.5 concentrations, respectively, while the PHOT3 investigated the impact of an increase in just the sulfate concentrations by a factor of 3.4 (as in 1990), applied only to the calculation of photolysis rates. In the BIO scenario, we reduced the 2010 SSR by 3 % (keeping plant cover and temperature the same), recalculated the biogenic emissions and repeated the base case simulations with the new biogenic emissions. The impact on photolysis rates for all three scenarios was an increase (in 2010 compared to 1990) of 3–6 % which resulted in daytime (10:00–18:00 Local Mean Time – LMT) mean surface ozone differences of 0.2–0.7 ppb (0.5–1.5 %), with the largest hourly difference rising as high as 4–8 ppb (10–16 %). The effect of changes in BVOC emissions on daytime mean surface ozone was much smaller (up to 0.08 ppb,  ∼  0.2 %), as isoprene and terpene (monoterpene and sesquiterpene) emissions increased only by 2.5–3 and 0.7 %, respectively. Overall, the impact of the SSR changes on surface ozone was greater via the effects on photolysis rates compared to the effects on BVOC emissions, and the sensitivity test of their combined impact (the combination of PHOT3 and BIO is denoted as the COMBO scenario) showed nearly additive effects. In addition, all the sensitivity runs were repeated on a second base case with increased NOx emissions to account for any potential underestimation of modeled ozone production; the results did not change significantly in magnitude, but the spatial coverage of the effects was profoundly extended. Finally, the role of the aerosol–radiation interaction (ARI) changes in the European summer surface ozone trends was suggested to be more important when comparing to the order of magnitude of the ozone trends instead of the total ozone concentrations, indicating a potential partial damping of the effects of ozone precursor emissions' reduction.</p

    The limitations of canine trabecular bone as a model for human: A biomechanical study

    Full text link
    Distal canine femurs were sectioned into 8mm cubic specimens. Orthogonal compression tests were performed to preyield in two or three directions and to failure in a third. Apparent density and ash weight density were measured for a subset of specimens. The results were compared to the human distal femur results of Ciarelli et al. (Transactions of the 32nd Annual Meeting of the Orthopaedic Research Society, Vol. 11, p. 42, 1986). Quantitative similarities existed in the fraction of components comprising the trabecular tissue of the two species. Qualitative similarities were seen in the positional and anisotropic variation of the mechanical properties, and also in the form and strength of the relationships between the mean modulus and bone density, ultimate stress and density, and ultimate stress and modulus. However, significantly different regression equations resulted for the mean modulus-density, and ultimate stress-modulus relationships, indicating that for the same density, canine trabecular bone displays a lower modulus than human, and may achieve greater compressive strains before failure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28130/1/0000581.pd

    External Bone Size Is a Key Determinant of Strength‐Decline Trajectories of Aging Male Radii

    Full text link
    Given prior work showing associations between remodeling and external bone size, we tested the hypothesis that wide bones would show a greater negative correlation between whole‐bone strength and age compared with narrow bones. Cadaveric male radii (n = 37 pairs, 18 to 89 years old) were evaluated biomechanically, and samples were sorted into narrow and wide subgroups using height‐adjusted robustness (total area/bone length). Strength was 54% greater (p < 0.0001) in wide compared with narrow radii for young adults (<40 years old). However, the greater strength of young‐adult wide radii was not observed for older wide radii, as the wide (R2 = 0.565, p = 0.001), but not narrow (R2 = 0.0004, p = 0.944) subgroup showed a significant negative correlation between strength and age. Significant positive correlations between age and robustness (R2 = 0.269, p = 0.048), cortical area (Ct.Ar; R2 = 0.356, p = 0.019), and the mineral/matrix ratio (MMR; R2 = 0.293, p = 0.037) were observed for narrow, but not wide radii (robustness: R2 = 0.015, p = 0.217; Ct.Ar: R2 = 0.095, p = 0.245; MMR: R2 = 0.086, p = 0.271). Porosity increased with age for the narrow (R2 = 0.556, p = 0.001) and wide (R2 = 0.321, p = 0.022) subgroups. The wide subgroup (p < 0.0001) showed a significantly greater elevation of a new measure called the Cortical Pore Score, which quantifies the cumulative effect of pore size and location, indicating that porosity had a more deleterious effect on strength for wide compared with narrow radii. Thus, the divergent strength–age regressions implied that narrow radii maintained a low strength with aging by increasing external size and mineral content to mechanically offset increases in porosity. In contrast, the significant negative strength–age correlation for wide radii implied that the deleterious effect of greater porosity further from the centroid was not offset by changes in outer bone size or mineral content. Thus, the low strength of elderly male radii arose through different biomechanical mechanisms. Consideration of different strength–age regressions (trajectories) may inform clinical decisions on how best to treat individuals to reduce fracture risk. © 2019 American Society for Bone and Mineral Research.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149566/1/jbmr3661_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149566/2/jbmr3661.pd

    On the formation of biogenic secondary organic aerosol in chemical transport models: an evaluation of the WRF-CHIMERE (v2020r2) model with a focus over the Finnish boreal forest

    Get PDF
    We present an evaluation of the regional chemical transport model (CTM) WRF-CHIMERE (v2020r2) for the formation of biogenic secondary organic aerosol (BSOA) with a focus over the Finnish boreal forest. Formation processes of biogenic aerosols are still affected by different sources of uncertainties, and model predictions vary greatly depending on the levels of details of the adopted chemical and emissions schemes. In this study, air quality simulations were conducted for the summer of 2019 using different organic aerosol (OA) schemes (as currently available in the literature) to treat the formation of BSOA. First, we performed a set of simulations in the framework of the volatility basis set (VBS) scheme carrying different assumptions for the treatment of the aging processes of BSOA. The results of the model were compared against high-resolution (i.e., 1 h) organic aerosol mass and size distribution measurements performed at the Station for Measuring Ecosystem–Atmosphere Relations (SMEAR-II) site located in Hyytiälä, in addition to other gas-phase species such as ozone (O3), nitrogen oxides (NOx), and biogenic volatile organic compound (BVOC) measurements of isoprene (C5H10) and monoterpenes. We show that WRF-CHIMERE could reproduce well the diurnal variation of the measured OA concentrations for all the investigated scenarios (along with the standard meteorological parameters) as well as the increase in concentrations during specific heat wave episodes. However, the modeled OA concentrations varied greatly between the schemes used to describe the aging processes of BSOA, as also confirmed by an additional evaluation using organic carbon (OC) measurement data retrieved from the EBAS European databases. Comparisons with isoprene and monoterpene air concentrations revealed that the model captured the observed monoterpene concentrations, but isoprene was largely overestimated, a feature that was mainly attributed to the overstated biogenic emissions of isoprene. We investigated the potential consequences of such an overestimation by inhibiting isoprene emissions from the modeling system. Results indicated that the modeled BSOA concentrations increased in the northern regions of the domain (e.g., Finland) compared to southern European countries, possibly due to a shift in the reactions of monoterpene compounds against available radicals, as further suggested by the reduction in α-pinene modeled air concentrations. Finally, we briefly analyze the differences in the modeled cloud liquid water content (clwc) among the simulations carrying different chemical schemes for the treatment of the aging processes of BSOA. The results of the model indicated an increase in clwc values at the SMEAR-II site, for simulations with higher biogenic organic aerosol loads, most likely as a result of the increased number of biogenic aerosol particles capable of activating cloud droplets.</p

    Mechanical properties of femoral trabecular bone in dogs

    Get PDF
    BACKGROUND: Studying mechanical properties of canine trabecular bone is important for a better understanding of fracture mechanics or bone disorders and is also needed for numerical simulation of canine femora. No detailed data about elastic moduli and degrees of anisotropy of canine femoral trabecular bone has been published so far, hence the purpose of this study was to measure the elastic modulus of trabecular bone in canine femoral heads by ultrasound testing and to assess whether assuming isotropy of the cancellous bone in femoral heads in dogs is a valid simplification. METHODS: From 8 euthanized dogs, both femora were obtained and cubic specimens were cut from the centre of the femoral head which were oriented along the main pressure and tension trajectories. The specimens were tested using a 100 MHz ultrasound transducer in all three orthogonal directions. The directional elastic moduli of trabecular bone tissue and degrees of anisotropy were calculated. RESULTS: The elastic modulus along principal bone trajectories was found to be 11.2 GPa ± 0.4, 10.5 ± 2.1 GPa and 10.5 ± 1.8 GPa, respectively. The mean density of the specimens was 1.40 ± 0.09 g/cm(3). The degrees of anisotropy revealed a significant inverse relationship with specimen densities. No significant differences were found between the elastic moduli in x, y and z directions, suggesting an effective isotropy of trabecular bone tissue in canine femoral heads. DISCUSSION: This study presents detailed data about elastic moduli of trabecular bone tissue obtained from canine femoral heads. Limitations of the study are the relatively small number of animals investigated and the measurement of whole specimen densities instead of trabecular bone densities which might lead to an underestimation of Young's moduli. Publications on elastic moduli of trabecular bone tissue present results that are similar to our data. CONCLUSION: This study provides data about directional elastic moduli and degrees of anisotropy of canine femoral head trabecular bone and might be useful for biomechanical modeling of proximal canine femora
    corecore