306 research outputs found

    Predicting dislocation climb: Classical modeling versus atomistic simulations

    Get PDF
    The classical modeling of dislocation climb based on a continuous description of vacancy diffusion is compared to recent atomistic simulations of dislocation climb in body-centered cubic iron under vacancy supersaturation [Phys. Rev. Lett. 105 095501 (2010)]. A quantitative agreement is obtained, showing the ability of the classical approach to describe dislocation climb. The analytical model is then used to extrapolate dislocation climb velocities to lower dislocation densities, in the range corresponding to experiments. This allows testing of the validity of the pure climb creep model proposed by Kabir et al. [Phys. Rev. Lett. 105 095501 (2010)]

    Loss of strength in Ni3Al at elevated temperatures

    Get PDF
    Stress decrease above the stress peak temperature (750 K) is studied in h123i single crystals of Ni3(Al, 3 at.% Hf ). Two thermally activated deformation mechanisms are evidenced on the basis of stress relaxation and strain rate change experiments. From 500 to 1070 K, the continuity of the activation volume/temperature curves reveals a single mechanism of activation enthalpy 3.8 eV/atom and volume 90 b3 at 810K with an athermal stress of 330 MPa. Over the very same temperature interval, impurity or solute diffusion towards dislocation cores is evidenced through serrated yielding, peculiar shapes of stress–strain curves while changing the rate of straining and stress relaxation experiments. This complicates the identification of the deformation mechanism, which is likely connected with cube glide. From 1070 to 1270 K, the high-temperature mechanism has an activation enthalpy and volume of 4.8 eV/atom and 20 b3, respectively, at 1250 K

    Membrane patterned by pulsed laser micromachining for proton exchange membrane fuel cell with sputtered ultra-low catalyst loadings

    Get PDF
    International audienceProton exchange membranes were nano-and micro-patterned on their cathode side by pressing them against stainless steel molds previously irradiated by a Ti:Sapphire femtosecond laser. The membranes were associated to ultra-low loaded thin catalytic layers (25 µgPt cm-2) prepared by plasma magnetron sputtering. The Pt catalyst was sputtered either on the membrane or on the porous electrode. The fuel cell performance in dry conditions were found to be highly dependent on the morphology of the membrane surface. When nanometric ripples covered by a Pt catalyst were introduced on the surface of the membrane, the fuel cell outperformed the conventional one with a flat membrane. By combining nano-and micro-patterns (nanometric ripples and 11-24 µm deep craters), the performance of the cells was clearly enhanced. The maximum power density achieved by the fuel cell was multiplied by a factor of 3.6 (at 50 °C and 3 bars): 438 mW cm-2 vs 122 mW cm-2. This improvement is due to high catalyst utilization with a high membrane conductivity. When Pt is sputtered on the porous electrode (and not on the membrane), the contribution of the patterned membrane to the fuel cell efficiency was less significant, except in the presence of nanometric ripples. This result suggests that the patterning of the membrane must be consistent with the way the catalyst is synthesized, on the membrane or on the porous electrode

    Molecular dynamics simulations of ternary PtxPdyAuz fuel cell nanocatalyst growth

    Get PDF
    International audienceMolecular dynamics simulation of PEMFC cathodes based on ternary Pt70Pd15Au15 and Pt50Pd25Au25 nanocatalysts dispersed on carbon indicate systematic Au segregation from the particle bulk to the surface, leading to an Au layer coating the cluster surface and to the spontaneous formation of a Pt@Pd@Au core-shell structure. For Au content below 25at%, surface Ptx Pdy active sites are available for efficient oxygen reduction reaction, in agreement with DFT calculations and experimental data. Simulations of direct core@shell system prepared in conditions mimicking those of plasma sputtering deposition pointed out an increase of the number of accessible PtxPd y surface active sites. Core-shell nanocatalyst morphology changes occur due to impinging Pt kinetic energy confinement and dissipation

    Solid polymer fuel cell synthesis by low pressure plasmas: a short review

    No full text
    In this review, we report on the use of low pressure plasmas for elaborating materials at the heart of solid polymer fuel cells (SPFC), especially electrodes and the membrane electrolyte. Electrodes are formed using plasma sputtering techniques while the ion conducting membranes are built up using plasma polymerization. Fuel cell performance will be improved by these approaches. The electrode catalyst profile is optimized while membrane working temperature is increased and methanol crossover is lowered compared to conventional PEM fuel cells.We gratefully thank GdR 2479 PACEM, Université d'Orléans, SPI-CNRS, ACI ECD 2004 (Ministry of Research) for grants and constant support

    Pheochromocytoma diagnosed during pregnancy: lessons learned from a series of ten patients

    Get PDF
    BACKGROUND: Pheochromocytoma (PHEO) in pregnancy is a life-threatening condition. Its management is challenging with regards to the timing and type of surgery. METHODS: A retrospective review of the management of ten patients diagnosed with pheochromocytoma during pregnancy was performed. Data were collected on the initial diagnostic workup, symptoms, treatment, and follow-up. RESULTS: PHEO was diagnosed in ten patients who were between the 10th and the 29th weeks of pregnancy. Six patients had none to mild symptoms, while four had complications of paroxysmal hypertension. Imaging investigations consisted of MRI, CT scan and ultrasounds. All had urinary metanephrines, measured as part of their workup. Three patients had MEN 2A, one VHL syndrome, one suspected SDH mutation. All patients were treated either with α/β blockers or calcium channel blockers to stabilize their clinical conditions. Seven patients underwent a laparoscopic adrenalectomy before delivery. Three out of these seven patients had a bilateral PHEO and underwent a unilateral adrenalectomy of the larger tumor during pregnancy, followed by a planned cesarean section and a subsequent contralateral adrenalectomy within a few months after delivery. Three patients had emergency surgery for maternal or fetal complications, with C-section followed by concomitant or delayed adrenalectomy. All newborns from the group of planned surgery were healthy, while two out three newborns within the emergency surgery group died shortly after delivery secondary to cardiac and pulmonary complications. CONCLUSIONS: PHEO in pregnancy is a rare condition. Maternal and fetal prognosis improved over the last decades, but still lethal consequences may be present if misdiagnosed or mistreated. A thorough multidisciplinary team approach should be tailored on an individual basis to better manage the pathology. Unilateral adrenalectomy in a pregnant patient with bilateral PHEO may be an option to avoid the risk of adrenal insufficiency after bilateral adrenalectomy

    Long-Term Impact of Cyclosporin Reduction with MMF Treatment in Chronic Allograft Dysfunction: REFERENECE Study 3-Year Follow Up

    Get PDF
    Calcineurin inhibitor (CNI) toxicity contributes to chronic allograft nephropathy (CAN). In the 2-year, randomized, study, we showed that 50% cyclosporin (CsA) reduction in combination with mycophenolate mofetil (MMF) treatment improves kidney function without increasing the risk for graft rejection/loss. To investigate the long-term effect of this regimen, we conducted a follow up study in 70 kidney transplant patients until 5 years after REFERENCE initiation. The improvement of kidney function was confirmed in the MMF group but not in the control group (CsA group). Four graft losses occurred, 2 in each group (graft survival in the MMF group 95.8% and 90.9% in control group). One death occurred in the control group. There was no statistically significant difference in the occurrence of serious adverse events or acute graft rejections. A limitation is the weak proportion of patient still remaining within the control group. On the other hand, REFERENCE focuses on the CsA regimen while opinions about the tacrolimus ones are still debated. In conclusion, CsA reduction in the presence of MMF treatment seems to maintain kidney function and is well tolerated in the long term

    Anomalous yielding in the complex metallic alloy Al13Co4

    Get PDF
    The single crystal deformation behaviour of orthorhombic Al13Co4 hasbeen studied below the brittle-ductile transition temperature observedin bulk material from room temperature to 600 degrees C, usingindentation, microcompression and transmission electron microscopy. Atroom temperature, slip occurred most easily by dislocation motion on the(0 0 1)[0 1 0] slip system, as observed in the ductile regime at hightemperatures. However, as the temperature was increased towards 600degrees C, the slip pattern changed to one consisting of linear defectsrunning perpendicular to the loading axis. Serrated flow was observed atall temperatures, although at 600 degrees C the magnitude of theserrations decreased. Anomalous yielding behaviour was also observedabove 226 degrees C, where both the yield and the 2\% flow stressincreased with temperature, almost doubling between 226 and 600 degreesC. It has been suggested that this might arise due to the increasingstability of orthorhombic Al13Co4 with respect to the monoclinic formwith increasing temperature. This is shown to be consistent with thetheoretical predictions that exist

    Kink pair production and dislocation motion

    Get PDF
    The motion of extended defects called dislocations controls the mechanical properties of crystalline materials such as strength and ductility. Under moderate applied loads, this motion proceeds via the thermal nucleation of kink pairs. The nucleation rate is known to be a highly nonlinear function of the applied load, and its calculation has long been a theoretical challenge. In this article, a stochastic path integral approach is used to derive a simple, general, and exact formula for the rate. The predictions are in excellent agreement with experimental and computational investigations, and unambiguously explain the origin of the observed extreme nonlinearity. The results can also be applied to other systems modelled by an elastic string interacting with a periodic potential, such as Josephson junctions in superconductors

    Impact of body mass index on post-thyroidectomy morbidity

    Get PDF
    BACKGROUND: The impact of obesity on total thyroidectomy (TT) morbidity (recurrent laryngeal nerve palsy and hypocalcaemia) remains largely unknown. METHODS: In a prospective study (NCT01551914), patients were divided into five groups according to their body mass index (BMI): underweight, normal weight, overweight, obese, and severely obese. Preoperative and postoperative serum calcium was measured. Recurrent laryngeal nerve (RLN) function was evaluated before discharge, and if abnormal, at 6 months. RESULTS: In total 1310 patients were included. Baseline characteristics were similar across BMI groups except for age and sex. Postoperative hypocalcaemia was more frequent in underweight compared to obese patients but the difference was not statistically significant in multivariate analysis. There was no difference between groups in terms of definitive hypocalcaemia, transient and definitive RLN palsy, and postoperative pain. CONCLUSION: Obesity does not increase intraoperative and postoperative morbidity of TT, despite a longer duration of the procedure
    corecore