
Predicting dislocation climb: Classical modeling versus

atomistic simulations

Emmanuel Clouet

To cite this version:

Emmanuel Clouet. Predicting dislocation climb: Classical modeling versus atomistic simula-
tions. Physical Review B : Condensed matter and materials physics, American Physical Society,
2011, 84 (9), pp.092106. <10.1103/PhysRevB.84.092106>. <hal-00625865>

HAL Id: hal-00625865

https://hal.archives-ouvertes.fr/hal-00625865

Submitted on 22 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Predicting dislocation climb: Classical modeling versus atomistic simulations

Emmanuel Clouet∗

Service de Recherches de Métallurgie Physique, CEA/Saclay, 91191 Gif-sur-Yvette, France
(Dated: September 22, 2011)

The classical modeling of dislocation climb based on a continuous description of vacancy diffusion
is compared to recent atomistic simulations of dislocation climb in body-centered cubic iron under
vacancy supersaturation [Phys. Rev. Lett. 105, 095501 (2010)]. A quantitative agreement is
obtained, showing the ability of the classical approach to describe dislocation climb. The analytical
model is then used to extrapolate dislocation climb velocities to lower dislocation densities, in the
range corresponding to experiments. This allows testing of the validity of the pure climb creep
model proposed by Kabir et al. [Phys. Rev. Lett. 105, 095501 (2010)].

PACS numbers: 61.72.Lk, 62.20.Hg

Dislocations can move out of their glide planes through
the emission or absorption of point defects. Such a mech-
anism, known as dislocation climb, has been modeled for
more than half a century now using a continuum descrip-
tion of matter and diffusion theory1,2. One can thus find
in most of the textbooks on dislocations3–7 analytical ex-
pressions which give the dislocation climbing velocity as
a function of the applied stress, the temperature, the
point defect supersaturation, etc. Although this clas-
sical description has been shown to reasonably explain
experimental observations8–13, a quantitative validation
by direct comparison to experiments is out of reach. Dis-
location climb is indeed rarely the single mechanism pro-
ducing plastic strain and one has usually to deal with a
complex dislocation microstructure.

On the other hand, atomistic simulations can be used
to study the pure climb either of an isolated dislocation
or of a well controlled dislocation microstructure. Such
simulations thus offer a natural way for a quantitative
validation of the classical approach. In this Brief Report,
we compare predictions of the classical dislocation climb
model3–7 to the results of atomistic simulations published
by Kabir et al. in Ref. 14.

Kabir et al.14 performed atomistic simulations to study
the climb of a mixed dislocation in body-centered cubic
iron. Their simulations are based on a kinetic Monte
Carlo algorithm which reproduces the diffusion of vacan-
cies and their annihilation on a dislocation jog. The in-
fluence of the dislocation on the vacancy migration bar-
riers is fully taken into account thanks to an empirical
potential which allows them to search for the minimum
energy path joining all neighboring vacancy stable po-
sitions (nudged elastic band method). In these simula-
tions, the dislocations can be considered as being satu-
rated with jogs because of the small dislocation length,
and the climb is driven by a high vacancy supersatura-
tion.

When pipe diffusion is fast enough and a high con-
centration of jogs is present on the dislocation, one can
assume that vacancies are at equilibrium all along the
dislocation line3–5. Diffusion theory then predicts3–5,15,16

that an infinite straight dislocation of Burgers vector b

and character θ climbs at a velocity

vcl = η
DV

b |sin (θ)| ln (R∞/rc)
|Ceq

V − C∞

V | .

The geometric factor η = 2π for an isolated dislocation.
DV is the vacancy diffusion coefficient in a dislocation-
free crystal, Ceq

V the concentration of vacancies in equi-
librium with the dislocation at a distance rc ∼ b from the
line, and C∞

V the average vacancy concentration imposed
at a distance R∞. This should correspond to half the av-
erage distance between dislocations, i.e. R∞ = 1/(2

√
ρD)

if ρD is the dislocation density. For a high vacancy su-
persaturation, like in the atomistic simulations of Kabir
et al.14, Ceq

V ≪ C∞

V and then

vcl = −η
DV

b |sin (θ)| ln
(

2rc
√
ρD

)C∞

V . (1)

Equation (1) predicts that the climb velocity, once nor-
malized by DVC

∞

V , should only depend on ρD. This
agrees with the atomistic simulations of Ref. 14: Results
for all temperatures and vacancy supersaturations are
well reproduced by Eq. (1). (Figs. 1 and 2). The two pa-
rameters η and rc appearing in this equation were used as
fitting parameters, and the best quantitative agreement
with atomistic simulations was obtained for the values
η = 12.8 and rc = 4.3b.
The geometric factor obtained from this fit (η ∼ 4π) is

close to its 2π theoretical value. The slight difference may
come from the fact that a periodic array of dislocation
dipoles has been modeled in the atomistic simulations of
Kabir et al.14, whereas an isolated dislocation is assumed
in Eq. (1). Burke and Nix17 also showed that the elas-
tic interaction between the vacancy and the dislocations,
which is neglected in our modeling approach, leads to a
value for η slightly higher than 2π, thus in agreement
with what we obtained.
The conventions are usually to take the capture radius

rc equal to the norm of the Burgers vector. Our fit of
Eq. (1) leads to rc = 4.3 b, which actually agrees with
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FIG. 1. Variation with the dislocation density ρD of the climb
velocity vcl normalized by DVC

∞

V for different temperatures
and vacancy supersaturations. Symbols corresponds to atom-
istic simulations14 and lines to Eq. (1).

the definition of the core region (r < 4 b) that has been
deduced from previous atomistic calculations18 on the
same model system.

One therefore sees that the two parameters η and rc are
physical parameters whose precise values are close to the-
oretical ones. It is also important to notice that both pa-
rameters do not theoretically depend on the dislocation
density, the vacancy supersaturation, the applied stress,
nor the temperature. This was checked and all atomistic
simulations of Ref. 14 could be reproduced with a single
set of parameters.

This comparison with atomistic simulations shows that
the classical modeling of dislocation climb leads to quan-
titative predictions. Such a model, based on a continuous
description of vacancy diffusion, does not explicitly take
into account all atomic details of the vacancy diffusion
close to the dislocation. It nevertheless manages to per-
fectly reproduce results of atomistic simulations. Finally,
all atomistic details on the vacancy migration are not
so relevant to model dislocation climb and one can use
classical mesoscopic approaches3–7,15,16 leading to simple
analytical expressions like Eq. (1).

One can now use this expression of dislocation climb
mobility to compare predictions of different creep models
with experimental data, in particular the creep model de-
veloped by Kabir et al.14. The dislocation densities in the
atomistic simulations14 (ρD & 1016m−2) are much higher
than the ones usually observed in creep experiments in
iron19,20 (ρD . 1012m−2). As a consequence, one cannot
directly use the dislocation climb velocities measured in
atomistic simulations, but one needs to extrapolate them
to lower dislocation densities. Kabir et al.14 used power
laws to perform such an extrapolation and concluded to

the agreement of their model with creep experiments. As
such power laws do not rely on any physical ground, it
is worth checking if the same nice agreement can be ob-
tained when the classical modeling of dislocation climb
leading to Eq. (1) is used for this extrapolation.
In the creep model, one usually uses a power law vcl ∝

ρD
m to reproduce the variations of the climbing velocity

with the dislocation density. Equation (1) leads then to
an exponent m which depends on the density ρD

m =
∂ ln (vcl)

∂ ln (ρD)
=

−1

2 ln
(

2rc
√
ρD

) . (2)

This exponent can now be used in the creep model pro-
posed by Kabir et al.14. This model assumes that all the
plastic strain in creep is produced by climbing disloca-
tions. Orowan law gives then the creep rate ε̇ = ρDbvcl.
The dislocation density is fixed by the Taylor relation
(ρD = (σ/αGb)2 where α ∼ 0.4 is an empirical constant14

and G is the shear modulus). The vacancy supersatura-
tion, which varies linearly both with the applied stress σ
and the dislocation velocity, is given by Eq. (1) in Ref. 14.
Equation (2) combined with these assumptions leads then
to a steady-state creep rate whose stress and tempera-
ture dependences can be reproduced by the power law
ε̇ = Aσn exp (−Q/kT ) with a stress-dependent exponent
n = 3 + 4m:

n(σ) = 3− 2

ln (2rcσ/αGb)
. (3)

Equation (3) allows applying the creep model of Kabir
et al. to a stress range much lower than in atomistic sim-
ulations. Stress in creep experiments in iron usually does
not exceed 100MPa19–24. Equation (3) then predicts an
exponent n smaller than 3.5, thus far from the values
higher than 6 found experimentally23,24. One therefore
sees that the creep model proposed by Kabir et al. can-
not explain experimental stress exponents measured in
iron. It naturally leads at low stress to an exponent close
to 3, like any other creep model based on pure climb25.
The high value for n obtained by Kabir et al.14 corre-
sponds to the much higher dislocation density of their
atomistic simulations and cannot be directly compared
to these experimental values.
One probably needs to consider both dislocation glide

and climb to obtain a stress exponent close to the exper-
imental one. A creep model based on dislocation pure
climb is only valid when dislocations cannot glide be-
cause of some constraints, crystallographic constraints
for instance as in hcp metals26,27 or quasicrystals13,28.
Creep in alpha iron is far from this ideal case as there
is nothing preventing the dislocations from gliding. As
pointed out by Weertman in his review paper29, “almost
all of the creep strain is produced by glide motion of dis-
locations”. Although dislocation climb is the rate limit-
ing process, dislocation glide strongly affects creep and
cannot be ignored. Weertman25,29,30 showed for instance
that the consideration of glide in a creep model makes
the stress exponent increase from n = 3 to n = 4.5.
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FIG. 2. Variation with the dislocation density ρD of the climb velocity vcl for different temperatures and for a vacancy
concentration (a) C∞

V = 510−5, (b) C∞

V = 10−4, and (c) C∞

V = 10−3. Symbols corresponds to atomistic simulations14 and
lines to Eq. (1).

Another discrepancy between the creep model of Kabir
et al.14 and experiments21–23 in iron comes from the tem-
perature dependence of the stress exponent n and the
stress dependence of the creep activation energy Q. Ac-
cording to Eq. (3), n does not depend directly on the
temperature. A temperature dependence may only arise
through a variation of the capture radius rc with the
temperature31. As shown above, a single value of rc could
be used to reproduce all the dislocation climbing veloc-
ities obtained by atomistic simulations in the tempera-
ture range 800 – 1100K. As a consequence, this creep
model does not lead to any temperature dependence of
the stress exponent n. The creep rate is obtained from
Orowan law ε̇ = ρDbvcl where the dislocation density is
deduced from Taylor relation and the climbing velocity
is given by Eq. (1). The activation energy Q for creep is
then the activation energy for vacancy diffusion whatever
the applied stress. The dependences found by Kabir et

al. (Fig. 4 in Ref. 14) are artifacts caused by a fit of the
climbing velocity at high densities using a simple power
law which neglects the logarithm appearing in Eq. (1).
To explain the dependence observed experimentally21–23,

one has therefore to rely on mechanisms which are not
considered in the creep model of Kabir et al..
Finally, it is worth pointing that the stress enters in

the creep model of Kabir et al.14 only through the control
of the dislocation density and of the vacancy supersatu-
ration. As the climbing velocity does not depend then
on the dislocation orientation, all dislocations, whatever
their orientations, are climbing at the same velocity. If
there is no specific climbing direction being enhanced by
the stress, no average macroscopic strain can develop and
there will be no creep.
In summary, the comparison with atomistic simu-

lations shows that a classical approach at a meso-
scopic scale manages to quantitatively describe disloca-
tion climb. Such an approach not only allows rationaliz-
ing results of atomistic simulations, but it is also neces-
sary to extrapolate them in a range of dislocation den-
sities corresponding to experiments. Thanks to such an
extrapolation based on a physical sound model, a fair test
of the validity of the creep model proposed by Kabir et

al.14 can be made, thus showing its inability to reproduce
experimental data on creep in iron.
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