The classical modeling of dislocation climb based on a continuous description
of vacancy diffusion is compared to recent atomistic simulations of dislocation
climb in body-centered cubic iron under vacancy supersaturation [Phys. Rev.
Lett. 105 095501 (2010)]. A quantitative agreement is obtained, showing the
ability of the classical approach to describe dislocation climb. The analytical
model is then used to extrapolate dislocation climb velocities to lower
dislocation densities, in the range corresponding to experiments. This allows
testing of the validity of the pure climb creep model proposed by Kabir et al.
[Phys. Rev. Lett. 105 095501 (2010)]