1,837 research outputs found

    Phase Transitions and Adsorption Isotherm in Multilayer Adsorbates with Lateral Interactions

    Full text link
    We analyze here a model for an adsorbate system composed of many layers by extending a theoretical approach used to describe pattern formation on a monolayer of adsorbates with lateral interactions. The approach shows, in addition to a first order phase transition in the first layer, a transition in the second layer together with evidence of a "cascade" of transitions if more layers are included. The transition profiles, showing a staircase structure, corroborate this picture. The adsorption isotherm that came out of this approach is in qualitative agreement with numerical and experimental results.Comment: Submited to Physica A, LaTex, 22 pgs, 6 figure

    Study of alkaline hydrothermal activation of belite cements by thermal analysis

    Get PDF
    The effect of alkaline hydrothermal activation of class-C fly ash belite cement was studied using thermal analysis (TG/DTG) by determining the increase in the combined water during a period of hydration of 180 days. The results were compared with those obtained for a belite cement hydrothermally activated in water. The two belite cements were fabricated via the hydrothermal-calcination route of class-C fly ash in 1 M NaOH solution (FABC-2-N) or demineralised water (FABC-2-W). From the results, the effect of the alkaline hydrothermal activation of belite cement (FABC-2-N) was clearly differentiated, mainly at early ages of hydration, for which the increase in the combined water was markedly higher than that of the belite cement that was hydrothermally activated in water. Important direct quantitative correlations were obtained among physicochemical parameters, such as the combined water, the BET surface area, the volume of nano-pores, and macro structural engineering properties such as the compressive mechanical strength

    Dynamic Scaling of an Adsorption-Diffusion Process on Fractals

    Full text link
    A dynamic scaling of a diffusion process involving the Langmuir type adsorption is studied. We find dynamic scaling functions in one and two dimensions and compare them with direct numerical simulations, and we further study the dynamic scaling law on fractal surfaces. The adsorption-diffusion process obeys the fracton dynamics on the fractal surfaces.Comment: 9 pages, 7 figure

    Predicting protein decomposition: the case of aspartic-acid racemization kinetics

    Get PDF
    The increase in proportion of the non-biological (D-) isomer of aspartic acid (Asp) relative to the L- isomer has been widely used in archaeology and geochemistry as a tool for dating. The method has proved controversial, particularly when used for bones. The non-linear kinetics of Asp racemization have prompted a number of suggestions as to the underlying mechanism(s) and have led to the use of mathe- matical transformations which linearize the increase in D-Asp with respect to time. Using one example, a suggestion that the initial rapid phase of Asp racemization is due to a contribution from asparagine (Asn), we demonstrate how a simple model of the degradation and racemization of Asn can be used to predict the observed kinetics. A more complex model of peptide bound Asx (Asn+Asp) racemization, which occurs via the formation of a cyclic succinimide (Asu), can be used to correctly predict Asx racemi- zation kinetics in proteins at high temperatures (95-140 °C). The model fails to predict racemization kinetics in dentine collagen at 37 °C. The reason for this is that Asu formation is highly conformation dependent and is predicted to occur extremely slowly in triple helical collagen. As conformation strongly in£uences the rate of Asu formation and hence Asx racemization, the use of extrapolation from high temperatures to estimate racemization kinetics of Asx in proteins below their denaturation temperature is called into question. In the case of archaeological bone, we argue that the D:L ratio of Asx re£ects the proportion of non- helical to helical collagen, overlain by the e¡ects of leaching of more soluble (and conformationally unconstrained) peptides. Thus, racemization kinetics in bone are potentially unpredictable, and the proposed use of Asx racemization to estimate the extent of DNA depurination in archaeological bones is challenged

    Sintering Kinetics of Plasma-Sprayed Zirconia TBCs

    No full text
    A model of the sintering exhibited by EB-PVD TBCs, based on principles of free energy minimization, was recently published by Hutchinson et al. In the current paper, this approach is applied to sintering of plasma-sprayed TBCs and comparisons are made with experimental results. Predictions of through-thickness shrinkage and changing pore surface area are compared with experimental data obtained by dilatometry and BET analysis respectively. The sensitivity of the predictions to initial pore architecture and material properties are assessed. The model can be used to predict the evolution of contact area between overlying splats. This is in turn related to the through-thickness thermal conductivity, using a previously-developed analytical model

    Ibuprofen-loaded calcium phosphate granules : combination of innovative characterization methods to relate mechanical strength to drug location

    Get PDF
    This paper studies the impact of the location of a drug substance on the physicochemical and mechanical properties of two types of calcium phosphate granules loaded with seven different contents of ibuprofen, ranging from 1.75% to 46%. These implantable agglomerates were produced by either low or high shear granulation. Unloaded Mi-Pro pellets presented higher sphericity and mechanical properties, but were slightly less porous than Kenwood granules (57.7% vs 61.2%). Nevertheless, the whole expected quantity of ibuprofen could be integrated into both types of granules. A combination of surface analysis, using near-infrared (NIR) spectroscopy coupling chemical imaging, and pellet porosity, by mercury intrusion measurements, allowed ibuprofen to be located. It was shown that, from 0% to 22% drug content, ibuprofen deposited simultaneously on the granule surface, as evidenced by the increase in surface NIR signal, and inside the pores, as highlighted by the decrease in pore volume. From 22%, porosity was almost filled, and additional drug substance coated the granule surfaces, leading to a large increase in the surface NIR signal. This coating was more regular for Mi-Pro pellets owing to their higher sphericity and greater surface deposition of drug substance. Unit crush tests using a microindenter revealed that ibuprofen loading enhanced the mechanical strength of granules, especially above 22% drug content, which was favorable to further application of the granules as a bone defect filler

    Influence of the initial chemical conditions on the rational design of silica particles

    Get PDF
    The influence of the water content in the initial composition on the size of silica particles produced using the Stöber process is well known. We have shown that there are three morphological regimes defined by compositional boundaries. At low water levels (below stoichiometric ratio of water:tetraethoxysilane), very high surface area and aggregated structures are formed; at high water content (>40 wt%) similar structures are also seen. Between these two boundary conditions, discrete particles are formed whose size are dictated by the water content. Within the compositional regime that enables the classical Stöber silica, the structural evolution shows a more rapid attainment of final particle size than the rate of formation of silica supporting the monomer addition hypothesis. The clearer understanding of the role of the initial composition on the output of this synthesis method will be of considerable use for the establishment of reliable reproducible silica production for future industrial adoption
    corecore