508 research outputs found

    Barriers and facilitators to providing CBT for people living with dementia: perceptions of psychological therapists

    Get PDF
    Many people living with dementia or mild cognitive impairment (MCI) experience anxiety and depression. Cognitive behavioral therapy (CBT) is a recommended treatment for adults, commonly provided through primary care psychological therapies services. This study explored the facilitators and barriers to providing CBT interventions for people living with dementia or MCI, as perceived by therapists working in such services. Structured interviews were conducted with fourteen clinicians recruited through primary care psychological therapies services about their experiences of working with people living with dementia or MCI and their ideas about factors that enhance or hinder offering and delivering CBT to this population. Interview recordings were transcribed and analyzed using Thematic Analysis. Credibility checks were incorporated throughout. Three themes were identified: 'attitudes towards dementia', 'competing demands', and 'pressure without support'. Perceived facilitators and barriers occurred across individual, service, and system levels. Facilitators were: positive engagement and outcomes for people living with dementia or MCI, positive attitudes of clinicians, and flexibility within some services. In contrast, perceived barriers were: stigma towards dementia and mental health in older adults, high pressure on staff to perform with a lack of support to do so, exclusion based on diagnosis, and inflexibility within some services. Clinicians were confident that people living with dementia or MCI could benefit from CBT, with some adaptations to delivery. There are implications for staff support and training, and for commissioning practices relating to the tension between minimal resources, equitable access, and person-centered care

    Networks of noisy oscillators with correlated degree and frequency dispersion

    Get PDF
    We investigate how correlations between the diversity of the connectivity of networks and the dynamics at their nodes affect the macroscopic behavior. In particular, we study the synchronization transition of coupled stochastic phase oscillators that represent the node dynamics. Crucially in our work, the variability in the number of connections of the nodes is correlated with the width of the frequency distribution of the oscillators. By numerical simulations on Erd\"os-R\'enyi networks, where the frequencies of the oscillators are Gaussian distributed, we make the counterintuitive observation that an increase in the strength of the correlation is accompanied by an increase in the critical coupling strength for the onset of synchronization. We further observe that the critical coupling can solely depend on the average number of connections or even completely lose its dependence on the network connectivity. Only beyond this state, a weighted mean-field approximation breaks down. If noise is present, the correlations have to be stronger to yield similar observations.Comment: 6 pages, 2 figure

    Integrative assessment of low-dose gamma radiation effects on <i>Daphnia magna</i> reproduction: Toxicity pathway assembly and AOP development

    Get PDF
    High energy gamma radiation is potentially hazardous to organisms, including aquatic invertebrates. Although extensively studied in a number of invertebrate species, knowledge on effects induced by gamma radiation is to a large extent limited to the induction of oxidative stress and DNA damage at the molecular/cellular level, or survival, growth and reproduction at the organismal level. As the knowledge of causal relationships between effects occurring at different levels of biological organization is scarce, the ability to provide mechanistic explanation for observed adverse effects is limited, and thus development of Adverse Outcome Pathways (AOPs) and larger scale implementation into next generation hazard and risk predictions is restricted. The present study was therefore conducted to assess the effects of high-energy gamma radiation from cobalt-60 across multiple levels of biological organization (i.e., molecular, cellular, tissue, organ and individual) and characterize the major toxicity pathways leading to impaired reproduction in the model freshwater crustacean Daphnia magna (water flea). Following gamma exposure, a number of bioassays were integrated to measure relevant toxicological endpoints such as gene expression, reactive oxygen species (ROS), lipid peroxidation (LPO), neutral lipid storage, adenosine triphosphate (ATP) content, apoptosis, ovary histology and reproduction. A non-monotonic pattern was consistently observed across the levels of biological organization, albeit with some variation at the lower end of the dose-rate scale, indicating a complex response to radiation doses. By integrating results from different bioassays, a novel pathway network describing the key toxicity pathways involved in the reproductive effects of gamma radiation were proposed, such as DNA damage-oocyte apoptosis pathway, LPO-ATP depletion pathway, calcium influx-endocrine disruption pathway and DNA hypermethylation pathway. Three novel AOPs were proposed for oxidative stressor-mediated excessive ROS formation leading to reproductive effect, and thus introducing the world's first AOPs for non-chemical stressors in aquatic invertebrates.publishedVersio

    Optimal interdependence between networks for the evolution of cooperation

    Get PDF
    Recent research has identified interactions between networks as crucial for the outcome of evolutionary games taking place on them. While the consensus is that interdependence does promote cooperation by means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we here address the question just how much interdependence there should be. Intuitively, one might assume the more the better. However, we show that in fact only an intermediate density of sufficiently strong interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links between the networks, and the independent formation of cooperative patterns on each individual network. Presented results are robust to variations of the strategy updating rule, the topology of interdependent networks, and the governing social dilemma, thus suggesting a high degree of universality

    Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators

    Get PDF
    L.P. acknowledges support from the National Science Foundation Graduate Research Fellowship Program. J.K. acknowledges support from the National Science Foundation Graduate Research Fellowship Program and NIH T32-EB020087, PD: Felix W. Wehrli. D.S.B. also acknowledges support from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, and the National Science Foundation (BCS-1441502, CAREER PHY-1554488, BCS-1631550, and CNS-1626008). We also thank two anonymous reviewers whose comments greatly improved the quality of this work. The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies.Peer reviewedPublisher PD

    Magnetoresistance through a single molecule

    Full text link
    The use of single molecules to design electronic devices is an extremely challenging and fundamentally different approach to further downsizing electronic circuits. Two-terminal molecular devices such as diodes were first predicted [1] and, more recently, measured experimentally [2]. The addition of a gate then enabled the study of molecular transistors [3-5]. In general terms, in order to increase data processing capabilities, one may not only consider the electron's charge but also its spin [6,7]. This concept has been pioneered in giant magnetoresistance (GMR) junctions that consist of thin metallic films [8,9]. Spin transport across molecules, i.e. Molecular Spintronics remains, however, a challenging endeavor. As an important first step in this field, we have performed an experimental and theoretical study on spin transport across a molecular GMR junction consisting of two ferromagnetic electrodes bridged by a single hydrogen phthalocyanine (H2Pc) molecule. We observe that even though H2Pc in itself is nonmagnetic, incorporating it into a molecular junction can enhance the magnetoresistance by one order of magnitude to 52%.Comment: To appear in Nature Nanotechnology. Present version is the first submission to Nature Nanotechnology, from May 18th, 201

    Extending the definition of modularity to directed graphs with overlapping communities

    Full text link
    Complex networks topologies present interesting and surprising properties, such as community structures, which can be exploited to optimize communication, to find new efficient and context-aware routing algorithms or simply to understand the dynamics and meaning of relationships among nodes. Complex networks are gaining more and more importance as a reference model and are a powerful interpretation tool for many different kinds of natural, biological and social networks, where directed relationships and contextual belonging of nodes to many different communities is a matter of fact. This paper starts from the definition of modularity function, given by M. Newman to evaluate the goodness of network community decompositions, and extends it to the more general case of directed graphs with overlapping community structures. Interesting properties of the proposed extension are discussed, a method for finding overlapping communities is proposed and results of its application to benchmark case-studies are reported. We also propose a new dataset which could be used as a reference benchmark for overlapping community structures identification.Comment: 22 pages, 11 figure

    Bisphenol A exposure in Mexico City and risk of prematurity: a pilot nested case control study

    Get PDF
    Abstract Background Presence of Bisphenol A (BPA) has been documented worldwide in a variety of human biological samples. There is growing evidence that low level BPA exposure may impact placental tissue development and thyroid function in humans. The aim of this present pilot study was to determine urinary concentrations of BPA during the last trimester of pregnancy among a small subset of women in Mexico City, Mexico and relate these concentrations to risk of delivering prematurely. Methods A nested case-control subset of 60 participants in the Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) study in Mexico City, Mexico were selected based on delivering less than or equal to 37 weeks of gestation and greater than 37 weeks of gestation. Third trimester archived spot urine samples were analyzed by online solid phase extraction coupled with high performance liquid chromatography isotope dilution tandem mass spectrometry. Results BPA was detected in 80.0% (N = 48) of the urine samples; total concentrations ranged from &lt; 0.4 &#956;g/L to 6.7 &#956;g/L; uncorrected geometric mean was 1.52 &#956;g/L. The adjusted odds ratio of delivering less than or equal to 37 weeks in relation to specific gravity adjusted third trimester BPA concentration was 1.91 (95%CI 0.93, 3.91, p-value = 0.08). When cases were further restricted to births occurring prior to the 37th week (n = 12), the odds ratio for specific-gravity adjusted BPA was larger and statistically significant (p &lt; 0.05). Conclusions This is the first study to document measurable levels of BPA in the urine of a population of Mexican women. This study also provides preliminary evidence, based on a single spot urine sample collected during the third trimester, that pregnant women who delivered less than or equal to 37 weeks of gestation and prematurely (&lt; 37 weeks) had higher urinary concentrations of BPA compared to women delivering after 37 weeks.http://deepblue.lib.umich.edu/bitstream/2027.42/78251/1/1476-069X-9-62.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78251/2/1476-069X-9-62.pdfPeer Reviewe

    Efficient screening for ‘genetic pollution’ in an anthropogenic crested newt hybrid zone

    Get PDF
    Genetic admixture between endangered native and non-native invasive species poses a complex conservation problem. Decision makers often need to quickly screen large numbers of individuals and distinguish natives from morphologically similar invading species and their genetically admixed offspring. We describe a protocol using the fast and economical Kompetitive Allele Specific PCR (KASP) technology for genotyping on a large scale. We apply this protocol to a case study of hybridization between a native and an invasive crested newt species. Using previously published data, we designed a panel of ten nuclear and one mitochondrial diagnostic SNP markers. We observed only minor differences between KASP and next-generation sequencing data previously produced with the Ion Torrent platform. We briefly discuss practical considerations for tackling the insidious conservation problem of genetic admixture between native and invasive species. The KASP genotyping protocol facilitates policy decision making for the crested newt case and is generally applicable to invasive hybridization with endangered taxa
    corecore