2,754 research outputs found

    A Mid-Infrared Study of the Class 0 Cluster in LDN 1448

    Get PDF
    We present ground-based mid-infrared observations of Class 0 protostars in LDN 1448. Of the five known protostars in this cloud, we detected two, L1448N:A and L1448C, at 12.5, 17.9, 20.8, and 24.5 microns, and a third, L1448 IRS 2, at 24.5 microns. We present high-resolution images of the detected sources, and photometry or upper limits for all five Class 0 sources in this cloud. With these data, we are able to augment existing spectral energy distributions (SEDs) for all five objects and place them on an evolutionary status diagram.Comment: Accepted by the Astronomical Journal; 26 pages, 9 figure

    Two Bipolar Outflows and Magnetic Fields in a Multiple Protostar System, L1448 IRS 3

    Get PDF
    We performed spectral line observations of CO J=2-1, 13CO J=1-0, and C18O J=1-0 and polarimetric observations in the 1.3 mm continuum and CO J=2-1 toward a multiple protostar system, L1448 IRS 3, in the Perseus molecular complex at a distance of ~250 pc, using the BIMA array. In the 1.3 mm continuum, two sources (IRS 3A and 3B) were clearly detected with estimated envelope masses of 0.21 and 1.15 solar masses, and one source (IRS 3C) was marginally detected with an upper mass limit of 0.03 solar masses. In CO J=2-1, we revealed two outflows originating from IRS 3A and 3B. The masses, mean number densities, momentums, and kinetic energies of outflow lobes were estimated. Based on those estimates and outflow features, we concluded that the two outflows are interacting and that the IRS 3A outflow is nearly perpendicular to the line of sight. In addition, we estimated the velocity, inclination, and opening of the IRS 3B outflow using Bayesian statistics. When the opening angle is ~20 arcdeg, we constrain the velocity to ~45 km/s and the inclination angle to ~57 arcdeg. Linear polarization was detected in both the 1.3 mm continuum and CO J=2-1. The linear polarization in the continuum shows a magnetic field at the central source (IRS 3B) perpendicular to the outflow direction, and the linear polarization in the CO J=2-1 was detected in the outflow regions, parallel or perpendicular to the outflow direction. Moreover, we comprehensively discuss whether the binary system of IRS 3A and 3B is gravitationally bound, based on the velocity differences detected in 13CO J=1-0 and C18O J=1-0 observations and on the outflow features. The specific angular momentum of the system was estimated as ~3e20 cm^2/s, comparable to the values obtained from previous studies on binaries and molecular clouds in Taurus.Comment: ApJ accepted, 20 pages, 2 tables, 10 figure

    First evidence for molecular interfaces between outflows and ambient clouds in high-mass star-forming regions?

    Get PDF
    We present new observations of the Cep A East region of massive star formation and describe an extended and dynamically distinct feature not previously recognized. This feature is present in emission from H2CS, OCS, CH3OH, and HDO at −5.5 km s−1 but is not traced by the conventional tracers of star-forming regions, H2S, SO2, SO, and CS. The feature is extended up to at least 0.1 pc. We show that the feature is neither a hot core nor a shocked outflow. However, the chemistry of the feature is consistent with predictions from a model of an eroding interface between a fast wind and a dense core; mixing between the two media occurs in the interface on a timescale of 10–50 yr. If these observations are confirmed by detailed maps and by detections in species also predicted to be abundant (e.g., HCO+, H2CO, and NH3), this feature would be the first detection of such an interface in regions of massive star formation. An important implication of the model is that a significant reservoir of sulfur in grain mantles is required to be in the form of OCS

    Giant Molecular Outflows Powered by Protostars in L1448

    Get PDF
    We present sensitive, large-scale maps of the CO J=1-0 emission of the L1448 dark cloud. These maps were acquired using the On-The-Fly capability of the NRAO 12-meter telescope. CO outflow activity is seen in L1448 on parsec-scales for the first time. Careful comparison of the spatial and velocity distribution of our high-velocity CO maps with previously published optical and near-infrared images and spectra has led to the identification of six distinct CO outflows. We show the direct link between the heretofore unknown, giant, highly-collimated, protostellar molecular outflows and their previously discovered, distant optical manifestations. The outflows traced by our CO mapping generally reach the projected cloud boundaries. Integrated intensity maps over narrow velocity intervals indicate there is significant overlap of blue- and red-shifted gas, suggesting the outflows are highly inclined with respect to the line-of-sight, although the individual outflow position angles are significantly different. The velocity channel maps also show that the outflows dominate the CO line cores as well as the high-velocity wings. The magnitude of the combined flow momenta, as well as the combined kinetic energy of the flows, are sufficient to disperse the 50 solar mass NH3 cores in which the protostars are currently forming, although some question remains as to the exact processes involved in redirecting the directionality of the outflow momenta to effect the complete dispersal of the parent cloud.Comment: 11 pages, 9 figures, to be published in the Astronomical Journa

    Star formation in the vicinity of the IC 348 cluster

    Get PDF
    Aims. We present molecular line observations of the southwestern part of the IC 348 young cluster, and we use them together with NIR and mm continuum data to determine the distribution of dense gas, search for molecular outflows, and analyze the ongoing star formation activity in the region. Methods. Our molecular line data consists of C18O(1--0) and N2H+(1--0) maps obtained with the FCRAO telescope at a resolution of about 50'' and CO(2--1) data obtained with the IRAM 30m telescope at a resolution of 11''. Results. The dense gas southwest of IC 348 is concentrated in two groups of dense cores, each of them with a few solar masses of material and indications of CO depletion at high density. One of the core groups is actively forming stars, while the other seems starless. There is evidence for at least three bipolar molecular outflows in the region, two of them powered by previously identified Class 0 sources, while the other one is powered by a still not well characterized low-luminosity object. The ongoing star formation activity is producing a small stellar subgroup in the cluster. Using the observed core characteristics and the star formation rate in the cluster we propose that that similar episodes of stellar birth may have produced the subclustering observed in the halo of IC 348.Comment: 10 pages, 6 figures, A&A accepte

    A Spectrophotometric Method to Determine the Inclination of Class I Objects

    Full text link
    A new method which enables us to estimate the inclination of Class I young stellar objects is proposed. Since Class I objects are not spherically symmetric, it is likely that the observed feature is sensitive to the inclination of the system. Thus, we construct a protostar model by carefully treating two-dimensional (2D) radiative transfer and radiative equilibrium. We show from the present 2D numerical simulations that the emergent luminosity L_SED,which is the frequency integration of spectral energy distribution (SED), depends strongly on the inclination of the system i, whereas the peak flux is insensitive to i. Based on this result, we introduce a novel indicator f_L, which is the ratio of L_SED to the peak flux, as a good measure for the inclination. By using f_L, we can determine the inclination regardless of the other physical parameters. The inclination would be determined by f_L within the accuracy of +- 5 degree, if the opening angle of bipolar outflows is specified by any other procedure. Since this spectrophotometric method is easier than a geometrical method or a full SED fitting method, this method could be a powerful tool to investigate the feature of protostars statistically with observational data which will be provided by future missions, such as SIRTF, ASTRO-F, and ALMA.Comment: 14 pages, 9 figures, accepted by Ap

    A search for CO+ in planetary nebulae

    Get PDF
    We have carried out a systematic search for the molecular ion CO+ in a sample of 8 protoplanetary and planetary nebulae in order to determine the origin of the unexpectedly strong HCO+ emission previously detected in these sources. An understanding of the HCO+ chemistry may provide direct clues to the physical and chemical evolution of planetary nebulae. We find that the integrated intensity of the CO+ line may be correlated with that of HCO+, suggesting that the reaction of CO+ with molecular hydrogen may be an important formation route for HCO+ in these planetary nebulae.Comment: 6 pages, 4 figures, accepted for publication in MNRA

    The clumpy structure of the chemically active L1157 outflow

    Get PDF
    We present high spatial resolution maps, obtained with the Plateau de Bure Interferometer, of the blue lobe of the L1157 outflow. We observed four lines at 3 mm, namely CH3OH (2_K-1_K), HC3N (11-10), HCN (1-0) and OCS (7-6). Moreover, the bright B1 clump has also been observed at better spatial resolution in CS (2-1), CH3OH (2_1-1_1)A-, and 34SO (3_2-2_1). These high spatial resolution observations show a very rich structure in all the tracers, revealing a clumpy structure of the gas superimposed to an extended emission. In fact, the three clumps detected by previous IRAM-30m single dish observations have been resolved into several sub-clumps and new clumps have been detected in the outflow. The clumps are associated with the two cavities created by two shock episodes driven by the precessing jet. In particular, the clumps nearest the protostar are located at the walls of the younger cavity with a clear arch-shape form while the farthest clumps have slightly different observational characteristics indicating that they are associated to the older shock episode. The emission of the observed species peaks in different part of the lobe: the east clumps are brighter in HC3N (11-10), HCN (1-0) and CS (2-1) while the west clumps are brighter in CH3OH(2_K-1_K), OCS (7-6) and 34SO (3_2-2_1). This peak displacement in the line emission suggests a variation of the physical conditions and/or the chemical composition along the lobe of the outflow at small scale, likely related to the shock activity and the precession of the outflow. In particular, we observe the decoupling of the silicon monoxide and methanol emission, common shock tracers, in the B1 clump located at the apex of the bow shock produced by the second shock episode.Comment: 11 pages, 8 figures, accepted for publication in the MNRA

    A CO Survey of Young Planetary Nebulae

    Full text link
    We report the results of a sensitive survey of young planetary nebulae in the CO J=2-1 line that significantly increases the available data on warm, dense, molecular gas in the early phases of planetary nebula formation. The observations were made using the IRAM 30 m telescope with the 3 by 3 pixel Heterodyne Receiver Array (HERA). The array provides an effective means of discriminating the CO emission of planetary nebulae in the galactic plane from contaminating emission of interstellar clouds along the line of sight. 110 planetary nebulae were observed in the survey and 40 were detected. The results increase the number of young planetary nebulae with known CO emission by approximately a factor of two. The CO spectra yield radial velocities for the detected nebulae, about half of which have uncertain or no velocity measurements at optical wavelengths. The CO profiles range from parabolic to double-peaked, tracing the evolution of structure in the molecular gas. The line widths are significantly larger than on the Asymptotic Giant Branch, and many of the lines show extended wings, which probably result from the effects on the envelopes of high velocity jets.Comment: 29 pages, 2 figures (with multiple panels), to be published in Astrophysical Journal Supplement Serie
    • …
    corecore