We performed spectral line observations of CO J=2-1, 13CO J=1-0, and C18O
J=1-0 and polarimetric observations in the 1.3 mm continuum and CO J=2-1 toward
a multiple protostar system, L1448 IRS 3, in the Perseus molecular complex at a
distance of ~250 pc, using the BIMA array. In the 1.3 mm continuum, two sources
(IRS 3A and 3B) were clearly detected with estimated envelope masses of 0.21
and 1.15 solar masses, and one source (IRS 3C) was marginally detected with an
upper mass limit of 0.03 solar masses. In CO J=2-1, we revealed two outflows
originating from IRS 3A and 3B. The masses, mean number densities, momentums,
and kinetic energies of outflow lobes were estimated. Based on those estimates
and outflow features, we concluded that the two outflows are interacting and
that the IRS 3A outflow is nearly perpendicular to the line of sight. In
addition, we estimated the velocity, inclination, and opening of the IRS 3B
outflow using Bayesian statistics. When the opening angle is ~20 arcdeg, we
constrain the velocity to ~45 km/s and the inclination angle to ~57 arcdeg.
Linear polarization was detected in both the 1.3 mm continuum and CO J=2-1. The
linear polarization in the continuum shows a magnetic field at the central
source (IRS 3B) perpendicular to the outflow direction, and the linear
polarization in the CO J=2-1 was detected in the outflow regions, parallel or
perpendicular to the outflow direction. Moreover, we comprehensively discuss
whether the binary system of IRS 3A and 3B is gravitationally bound, based on
the velocity differences detected in 13CO J=1-0 and C18O J=1-0 observations and
on the outflow features. The specific angular momentum of the system was
estimated as ~3e20 cm^2/s, comparable to the values obtained from previous
studies on binaries and molecular clouds in Taurus.Comment: ApJ accepted, 20 pages, 2 tables, 10 figure