84 research outputs found

    Can Recurrence Quantification Analysis Be Useful in the Interpretation of Airborne Turbulence Measurements?

    Get PDF
    In airborne data or model outputs, clouds are often defined using information about Liquid Water Content (LWC). Unfortunately LWC is not enough to retrieve information about the dynamical boundary of the cloud, that is, volume of turbulent air around the cloud. In this work, we propose an algorithmic approach to this problem based on a method used in time series analysis of dynamical systems, namely Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA). We construct RPs using time series of turbulence kinetic energy, vertical velocity and temperature fluctuations as variables important for cloud dynamics. Then, by studying time series of laminarity (LAM), a variable which is calculated using RPs, we distinguish between turbulent and non-turbulent segments along a horizontal flight leg. By selecting a single threshold of this quantity, we are able to reduce the number of subjective variables and their thresholds used in the definition of the dynamical cloud boundary

    Biological reference materials for extracellular vesicle studies

    Get PDF
    LR: 20161010; CI: Copyright (c) 2016; JID: 9317982; OTO: NOTNLM; 2016/05/13 [received]; 2016/09/06 [revised]; 2016/09/06 [accepted]; aheadofprintExtracellular vesicles (EVs) mediate normal physiological homeostasis and pathological processes by facilitating intercellular communication. Research of EVs in basic science and clinical settings requires both methodological standardization and development of reference materials (RM). Here, we show insights and results of biological RM development for EV studies. We used a three-step approach to find and develop a biological RM. First, a literature search was done to find candidates for biological RMs. Second, a questionnaire was sent to EV researchers querying the preferences for RM and their use. Third, a biological RM was selected, developed, characterized, and evaluated. The responses to the survey demonstrated a clear and recognized need for RM optimized for the calibration of EV measurements. Based on the literature, naturally occurring and produced biological RM, such as virus particles and liposomes, were proposed as RM. However, none of these candidate RMs have properties completely matching those of EVs, such as size and refractive index distribution. Therefore, we evaluated the use of nanoerythrosomes (NanoE), vesicles produced from erythrocytes, as a potential biological RM. The strength of NanoE is their resemblance to EVs. Compared to the erythrocyte-derived EVs (eryEVs), NanoE have similar morphology, a similar refractive index (1.37), larger diameter (70% of the NanoE are over 200nm), and increased positive staining for CD235a and lipids (Di-8-ANEPPS) (58% and 67% in NanoE vs. 21% and 45% in eryEVs, respectively). Altogether, our results highlight the general need to develop and validate new RM with similar physical and biochemical properties as EVs to standardize EV measurements between instruments and laboratories.Extracellular vesicles (EVs) mediate normal physiological homeostasis and pathological processes by facilitating intercellular communication. Research of EVs in basic science and clinical settings requires both methodological standardization and development of reference materials (RM). Here, we show insights and results of biological RM development for EV studies. We used a three-step approach to find and develop a biological RM. First, a literature search was done to find candidates for biological RMs. Second, a questionnaire was sent to EV researchers querying the preferences for RM and their use. Third, a biological RM was selected, developed, characterized, and evaluated. The responses to the survey demonstrated a clear and recognized need for RM optimized for the calibration of EV measurements. Based on the literature, naturally occurring and produced biological RM, such as virus particles and liposomes, were proposed as RM. However, none of these candidate RMs have properties completely matching those of EVs, such as size and refractive index distribution. Therefore, we evaluated the use of nanoerythrosomes (NanoE), vesicles produced from erythrocytes, as a potential biological RM. The strength of NanoE is their resemblance to EVs. Compared to the erythrocyte-derived EVs (eryEVs), NanoE have similar morphology, a similar refractive index (137), larger diameter (70% of the NanoE are over 200 nm), and increased positive staining for CD235a and lipids (Di-8-ANEPPS) (58% and 67% in NanoE vs. 21% and 45% in eryEVs, respectively). Altogether, our results highlight the general need to develop and validate new RM with similar physical and biochemical properties as EVs to standardize EV measurements between instruments and laboratories. (C) 2016 The Authors. Published by Elsevier B.V.Peer reviewe

    Enhanced surface water flood forecasts: User-led development and testing

    Get PDF
    The risk of surface water flooding (SWF) in England is already high and its frequency and severity is projected to increase in the future. SWF generally occurs due to intense, highly localised rainfall, which is challenging to forecast with sufficient accuracy to take proactive action ahead of flood events. Being able to manage the risk effectively lies in improved rainfall and flood forecast products, better communication of uncertainty and building the capacity of local responders. This study utilises state-of-the-art high-resolution ensemble rainfall forecasts and hydraulic modelling tools alongside a novel post-processing method to develop and trial new SWF forecast products within an incident workshop attended by forecast producers and regional forecast users. Twenty-two of 24 workshop participants reported that the new information would be useful to their organisation but more product development and training in its interpretation is required. Specific recommendations to improve SWF forecast provision include increased support for local government through a single government organisation responsible for SWF, making more use of existing static SWF mapping in a real-time context and employing the process of user-based consultation, as outlined in this study, to guide the future development of future SWF forecast information and processes

    Extracellular vesicles, tissue factor, cancer and thrombosis – discussion themes of the ISEV 2014 Educational Day

    Get PDF
    Although the association between cancer and venous thromboembolism (VTE) has long been known, the mechanisms are poorly understood. Circulating tissue factor–bearing extracellular vesicles have been proposed as a possible explanation for the increased risk of VTE observed in some types of cancer. The International Society for Extracellular Vesicles (ISEV) and International Society on Thrombosis and Haemostasis (ISTH) held a joint Educational Day in April 2014 to discuss the latest developments in this field. This review discusses the themes of that event and the ISEV 2014 meeting that followed

    Identification of critical paralog groups with indispensable roles in the regulation of signaling flow

    Get PDF
    Extensive cross-talk between signaling pathways is required to integrate the myriad of extracellular signal combinations at the cellular level. Gene duplication events may lead to the emergence of novel functions, leaving groups of similar genes - termed paralogs - in the genome. To distinguish critical paralog groups (CPGs) from other paralogs in human signaling networks, we developed a signaling network-based method using cross-talk annotation and tissue-specific signaling flow analysis. 75 CPGs were found with higher degree, betweenness centrality, closeness, and ‘bowtieness’ when compared to other paralogs or other proteins in the signaling network. CPGs had higher diversity in all these measures, with more varied biological functions and more specific post-transcriptional regulation than non-critical paralog groups (non-CPG). Using TGF-beta, Notch and MAPK pathways as examples, SMAD2/3, NOTCH1/2/3 and MEK3/6-p38 CPGs were found to regulate the signaling flow of their respective pathways. Additionally, CPGs showed a higher mutation rate in both inherited diseases and cancer, and were enriched in drug targets. In conclusion, the results revealed two distinct types of paralog groups in the signaling network: CPGs and non-CPGs. Thus highlighting the importance of CPGs as compared to non-CPGs in drug discovery and disease pathogenesis

    Deep Convective Microphysics Experiment (DCMEX) coordinated aircraft and ground observations: microphysics, aerosol, and dynamics during cumulonimbus development

    Get PDF
    Cloud feedbacks associated with deep convective anvils remain highly uncertain. In part, this uncertainty arises from a lack of understanding of how microphysical processes influence the cloud radiative effect. In particular, climate models have a poor representation of microphysics processes, thereby encouraging the collection and study of observation data to enable better representation of these processes in models. As such, the Deep Convective Microphysics Experiment (DCMEX) undertook an in situ aircraft and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar, thermodynamics, dynamics, electric fields, and weather. This paper introduces the potential data user to DCMEX observational campaign characteristics, relevant instrument details, and references to more detailed instrument descriptions. Also included is information on the structure and important files in the dataset in order to aid the accessibility of the dataset to new users. Our overview of the campaign cases illustrates the complementary operational observations available and demonstrates the breadth of the campaign cases observed. During the campaign, a wide selection of environmental conditions occurred, ranging from dry, northerly air masses with low wind shear to moist, southerly air masses with high wind shear. This provided a wide range of different convective growth situations. Of 19 flight days, only 2 d lacked the formation of convective cloud. The dataset presented (https://doi.org/10.5285/B1211AD185E24B488D41DD98F957506C; Facility for Airborne Atmospheric Measurements et al., 2024) will help establish a new understanding of processes on the smallest cloud- and aerosol-particle scales and, once combined with operational satellite observations and modelling, can support efforts to reduce the uncertainty of anvil cloud radiative impacts on climate scales
    • 

    corecore