564 research outputs found

    DNA barcoding, dwelling morphology, and fecundity of the gall-forming shrimp <i>Paratypton siebenrocki</i> Balss, 1914 (Caridea: Palaemonidae)

    Get PDF
    Tropical coral reefs offer a wide variety of habitats to countless invertebrate species. Sessile host organisms especially are inhabited by small taxa, of which decapod crustaceans form one of the most diverse communities. Symbiotic palaemonid shrimp species associ-ate with marine invertebrate hosts from multiple phyla, including cnidarians such as stony corals (Scleractinia). The intriguing gall- forming shrimp Paratypton siebenrocki, a symbiont of Acropora corals in the Indo-Pacific, was collected in the Saudi Arabian Red Sea, Kenya, and the Maldives. Based on morphology P. siebenrocki has been considered to be most closely related to the genera Anapontonia and Metapontonia; however, no clear clustering with either palaemonid genus was observed in a phylogenetic recon-struction based on 16S and COI mtDNA. Here we photo-document the dwellings of P. siebenrocki in Acropora spp. for the first time, and furthermore we report on the reproductive output of this species. The number of eggs ranged from 345 to 909 (n = 6), and embryo volume differed strongly between early- and late-stage embryos. The carapace length ranged from 2.58 to 4.55 mm for the females and 1.51 to 2.5 mm for the males (n = 5). The number and size of the embryos, combined with their specialised, secluded lifestyle, sug-gest that P. siebenrocki allocates highe

    Coherent Parton Showers with Local Recoils

    Full text link
    We outline a new formalism for dipole-type parton showers which maintain exact energy-momentum conservation at each step of the evolution. Particular emphasis is put on the coherence properties, the level at which recoil effects do enter and the role of transverse momentum generation from initial state radiation. The formulated algorithm is shown to correctly incorporate coherence for soft gluon radiation. Furthermore, it is well suited for easing matching to next-to-leading order calculations.Comment: 24 pages, 3 figure

    The H1 Forward Proton Spectrometer at HERA

    Full text link
    The forward proton spectrometer is part of the H1 detector at the HERA collider. Protons with energies above 500 GeV and polar angles below 1 mrad can be detected by this spectrometer. The main detector components are scintillating fiber detectors read out by position-sensitive photo-multipliers. These detectors are housed in so-called Roman Pots which allow them to be moved close to the circulating proton beam. Four Roman Pot stations are located at distances between 60 m and 90 m from the interaction point.Comment: 20 pages, 10 figures, submitted to Nucl.Instr.and Method

    Colour reconnections in Herwig++

    Get PDF
    We describe the implementation details of the colour reconnection model in the event generator Herwig++. We study the impact on final-state observables in detail and confirm the model idea from colour preconfinement on the basis of studies within the cluster hadronization model. Moreover, we show that the description of minimum bias and underlying event data at the LHC is improved with this model and present results of a tune to available data.Comment: 19 pages, 21 figures, 2 tables. Matches with published versio

    A 3D track finder for the Belle II CDC L1 trigger

    Get PDF
    Machine learning methods are integrated into the pipelined first level (L1) track trigger of the upgraded flavor physics experiment Belle II at KEK in Tsukuba, Japan. The novel triggering techniques cope with the severe background from events outside the small collision region provided by the new SuperKEKB asymmetric-energy electron-positron collider. Using the precise drift-time information of the central drift chamber which provides axial and stereo wire layers, a neural network L1 trigger estimates the 3D track parameters of tracks, based on input from the axial wire planes provided by a 2D track finder. An extension of this 2D Hough track finder to a 3D finder is proposed, where the single hit representations in the Hough plane are trained using Monte Carlo. This 3D finder improves the track finding efficiency by including the stereo sense wires as input. The estimated polar track angle allows a specialization of the subsequent neural networks to sectors in the polar angle

    Information extraction from messages in disaster management

    Get PDF

    Prototype design of a timing and fast control system in the CBM experiment

    Get PDF
    The Compressed Baryonic Matter (CBM) experiment is designed to handle interaction rates of up to 10 MHz and up to 1 TB/s of raw data generated. With triggerless streaming data acquisition in the experiment and beam intensity fluctuations, it is expected that occasional data bursts will surpass bandwidth capabilities of the Data Acquisition System (DAQ) system. In order to preserve integrity of event data, the bandwidth of DAQ must be throttled in an organised way with minimum information loss. The Timing and Fast Control (TFC) system provides a latency-optimised datapath for throttling commands and distributes a system clock together with a global timestamp. This paper describes a prototype design of the system with focus on synchronisation and its evaluation

    T1 Mapping Quantifies Spinal Cord Compression in Patients With Various Degrees of Cervical Spinal Canal Stenosis

    Get PDF
    Age-related degeneration of the cervical spinal column is the most common cause of spinal cord lesions. T1 mapping has been shown to indicate the grade and site of spinal cord compression in low grade spinal canal stenosis (SCS). Aim of our study was to further investigate the diagnostic potential of a novel T1 mapping method at 0.75 mm resolution and 4 s acquisition time in 31 patients with various grades of degenerative cervical SCS. T1 mapping was performed in axial sections of the stenosis as well as above and below. Included subjects received standard T2-weighted MRI of the cervical spine (including SCS-grading 0-III), electrophysiological, and clinical examination. We found that patients with cervical SCS showed a significant difference in T1 relaxation times within the stenosis (727 ± 66 ms, mean ± standard deviation) in comparison to non-stenotic segments above (854 ± 104 ms, p < 0.001) and below (893 ± 137 ms, p < 0.001). There was no difference in mean T1 in non-stenotic segments in patients (p = 0.232) or between segments in controls (p = 0.272). Mean difference of the T1 relaxation times was significantly higher in grade III stenosis (234 ± 45) vs. in grade II stenosis (176 ± 45, p = 0.037) vs. in grade I stenosis (90 ± 87 ms, p = 0.010). A higher difference in T1 relaxation time was associated with a central efferent conduction deficit. In conclusion, T1 mapping may be useful as a tool for SCS quantification in all grades of SCS, including high-grade stenosis with myelopathy signal in conventional T2-weighted imaging

    Prototype design of a timing and fast control system in the CBM experiment

    Get PDF
    The Compressed Baryonic Matter (CBM) experiment is designed to handle interaction rates of up to 10 MHz and up to 1 TB/s of raw data generated. With triggerless streaming data acquisition in the experiment and beam intensity fluctuations, it is expected that occasional data bursts will surpass bandwidth capabilities of the Data Acquisition System (DAQ) system. In order to preserve integrity of event data, the bandwidth of DAQ must be throttled in an organised way with minimum information loss. The Timing and Fast Control (TFC) system provides a latency-optimised datapath for throttling commands and distributes a system clock together with a global timestamp. This paper describes a prototype design of the system with focus on synchronisation and its evaluation
    • …
    corecore