1,162 research outputs found
Love U Be U
Love U Be U is a compilation of a track, lyric video, and live performance that weaves between the genres of house, disco, funk, r&b, and rap created by Avril Shawn Pryce. This project aims to examine the topic of self-love and being comfortable in your own skin. The end goal of this work is to engage the viewer and educate them about self-love and acceptance of people that are different from them. There were many challenges faced including the lack of finances, expertise, and time. Against all odds Avril was able to successfully complete Love U Be U with having acquired music production, video editing, and project management skills. Love U Be U fostered Avrilâs self-innovation and is the first step in starting his career as an artist to create future innovative works.https://remix.berklee.edu/graduate-studies-production-technology/1143/thumbnail.jp
Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields
The aim of this paper is to provide a general procedure to extract the constitutive parameters of a plasticity model starting from displacement measurements and using the Virtual Fields Method. This is a classical inverse problem which has been already investigated in the literature, however several new features are developed here. First of all the procedure applies to a general three-dimensional displacement field which leads to large plastic deformations, no assumptions are made such as plane stress or plane strain although only pressure-independent plasticity is considered. Moreover the equilibrium equation is written in terms of the deviatoric stress tensor that can be directly computed from the strain field without iterations. Thanks to this, the identification routine is much faster compared to other inverse methods such as finite element updating. The proposed method can be a valid tool to study complex phenomena which involve severe plastic deformation and where the state of stress is completely triaxial, e.g. strain localization or necking occurrence. The procedure has been validated using a three dimensional displacement field obtained from a simulated experiment. The main potentialities as well as a first sensitivity study on the influence of measurement errors are illustrated
Low oxygen tension reverses antineoplastic effect of iron chelator deferasirox in human glioblastoma cells
Background
Overcoming resistance to treatment is an essential issue in many cancers including glioblastoma (GBM), the deadliest primary tumor of the central nervous system. As dependence on iron is a key feature of tumor cells, using chelators to reduce iron represents an opportunity to improve conventional GBM therapies. The aim of the present study was, therefore, to investigate the cytostatic and cytotoxic impact of the new iron chelator deferasirox (DFX) on human GBM cells in well-defined clinical situations represented by radiation therapy and mild-hypoxia.
Results
Under experimental normoxic condition (21Â % O2), deferasirox (DFX) used at 10Â ÎŒM for 3Â days reduced proliferation, led cell cycle arrest in S and G2-M phases and induced cytotoxicity and apoptosis in U251 and U87 GBM cells. The abolition of the antineoplastic DFX effects when cells were co-treated with ferric ammonium sulfate supports the hypothesis that its effects result from its ability to chelate iron. As radiotherapy is the main treatment for GBM, the combination of DFX and X-ray beam irradiation was also investigated. Irradiation at a dose of 16Â Gy repressed proliferation, cytotoxicity and apoptosis, but only in U251 cells, while no synergy with DFX was observed in either cell line. Importantly, when the same experiment was conducted in mild-hypoxic conditions (3Â % O2), the antiproliferative and cytotoxic effects of DFX were abolished, and its ability to deplete iron was also impaired.
Conclusions
Taken together, these in vitro results could raise the question of the benefit of using iron chelators in their native forms under the hypoxic conditions often encountered in solid tumors such as GBM. Developing new chemistry or a new drug delivery system that would keep DFX active in hypoxic cells may be the next step toward their application
Functional interaction of STAT3 transcription factor with the coactivator NcoA/SRC1a.
Signal transducer and activator of transcription 3 (STAT3) transcription factors are cytoplasmic proteins that induce gene activation in response to cytokine receptor stimulation. Following tyrosine phosphorylation, STAT3 proteins dimerize, translocate to the nucleus, and activate specific target genes. This transcriptional activation by STAT3 proteins has been shown to require the recruitment of coactivators such as CREB-binding protein (CBP)/p300. In the present study, we show that steroid receptor coactivator 1, NcoA/SRC1a, originally identified as a nuclear receptor coactivator, also functions as a coactivator of STAT3 proteins. In coimmunoprecipitations, NcoA/SRC1a was found to associate with STAT3 following IL-6 stimulation of HepG2 hepatoma cells. Pull-down experiments indicated that the N-terminal part of NcoA/SRC1a associates with the activation domain of STAT3. Overexpression of NcoA/SRC1a or its SRC1e isoform enhanced transcriptional activation by STAT3 proteins in transient transfection experiments. This ability of NcoA/SRC1a to enhance STAT3 activity is dependent upon the presence of the CBP-interacting domain, activation domain 1. Using chromatin immunoprecipitation assays, we found that STAT3, NcoA/SRC1a, and CBP/p300 are simultaneously recruited to the p21(waf1) promoter following interleukin-6 stimulation. Taken together, these data suggest that CBP/p300 and NcoA/SRC1a may function in a common pathway to regulate STAT3 transcriptional activity
Computational modeling of multiple myeloma interactions with resident bone marrow cells
The interaction of multiple myeloma with bone marrow resident cells plays a key role in tumor progression and the development of drug resistance. The tumor cell response involves contact-mediated and paracrine interactions. The heterogeneity of myeloma cells and bone marrow cells makes it difficult to reproduce this environment in in-vitro experiments. The use of in-silico established tools can help to understand these complex problems.
In this article, we present a computational model based on the finite element method to define the interactions of multiple myeloma cells with resident bone marrow cells. This model includes cell migration, which is controlled by stressâstrain equilibrium, and cell processes such as proliferation, differentiation, and apoptosis.
A series of computational experiments were performed to validate the proposed model. Cell proliferation by the growth factor IGF-1 is studied for different concentrations ranging from 0â10 ng/mL.
Cell motility is studied for different concentrations of VEGF and fibronectin in the range of 0â100 ng/mL. Finally, cells were simulated under a combination of IGF-1 and VEGF stimuli whose concentrations are considered to be dependent on the cancer-associated fibroblasts in the extracellular matrix.
Results show a good agreement with previous in-vitro results. Multiple myeloma growth and migration are shown to correlate linearly to the IGF-1 stimuli. These stimuli are coupled with the mechanical environment, which also improves cell growth. Moreover, cell migration depends on the fiber and VEGF concentration in the extracellular matrix. Finally, our computational model shows myeloma cells trigger mesenchymal stem cells to differentiate into cancer-associated fibroblasts, in a dose-dependent manner
Experimental Behavior of Sulfur Under Primitive Planetary Differentiation Processes, the Sulfide Formations in Enstatite Meteorites and Implications for Mercury.
Enstatite meteorites are the most reduced naturally-occuring materials of the solar system. The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in these meteorite groups. The importance of such minerals, their formation, composition and textural relationships for understanding the genesis of enstatite chondrites (EC) and aubrites, has long been recognized (e.g. [1]). However, the mechanisms of formation of these sulfides is still not well constrained certainly because of possible multiple ways to produce them. We propose to simulate different models of formation in order to check their mineralogical, chemical and textural relevancies. The solubility of sulfur in silicate melts is of primary interest for planetary mantles, particularly for the Earth and Mercury. Indeed, these two planets could have formed, at least partly, from EC materials (e.g. [2, 3, 4]). The sulfur content in silicate melts depends on the melt composition but also on pressure (P), temperature (T) and oxygen fugacity fO2. Unfortunately, there is no model of general validity in a wide range of P-T-fO2-composition which describes precisely the evolution of sulfur content in silicate melts, even if the main trends are now known. The second goal of this study is to constrain the sulfur content in silicate melts under reducing conditions and different temperatures
In Vitro Characterisation of Physiological and Maximum Elastic Modulus of Ascending Thoracic Aortic Aneurysms Using Uniaxial Tensile Testing
AbstractObjectiveAscending thoracic aortic aneurysms (ATAA) are a life-threatening condition due to the risk of rupture or dissection. This risk is increased in the presence of a bicuspid aortic valve (BAV). The purpose of this study was to provide data on the elastic modulus of aortic wall of ATAA using uniaxial tensile testing in two different areas of the stressâstrain relationship: physiological and maximum range of stresses. The influence of tissue location, tissue orientation and valve type on these parameters was investigated.Materials and methodsTissues freshly excised from ATAA with bicuspid or tricuspid aortic valve were obtained from greater and lesser curvature (GC and LC) and the specimens were tested uniaxially in circumferential (CIRC) and longitudinal (LONG) orientation. Maximum elastic modulus (MEM) was given by the maximum slope of the stressâstrain curve before failure. Physiological modulus (PM) was derived from the Laplace law and from ranges of pressure of 80â120 mmHg. Means of each group of specimen were compared using Student's t-test to assess the influence of location, orientation and valve type on each mechanical parameter.ResultsPM was found to be significantly lower than the MEM (p < 0.001). The MEM and PM were significantly higher (p < 0.01) in the CIRC (n = 66) than in the LONG orientation (n = 42). The MEM was higher in the circumferential orientation in the BAV group (p < 0.001 in GC and p < 0.05 in LC). MEM and PM in GC specimens were higher in the longitudinal orientation than the LC specimens (p < 0.05).ConclusionThis study demonstrates the anisotropy of the aortic wall in ATAA and provides data on the mechanical behaviour in the physiological range of pressure
- âŠ