Lower limb amputation induces a reduction of patient’s autonomy in their everyday life activity. Even if prosthetic design and rehabilitation procedure are always in progress, the functional outcome for people with amputation should nevertheless be improved. Indeed, nowadays, an important number of patients find well-adapted solutions for level walking among the offer of prosthetic devices. But, they described some situations as limiting for their locomotion: stairs, slopes and cross slopes are often cited. Not only are these limitations due to the prosthetic components functionalities but also to difficulties in optimally using these prostheses lacking a specific rehabilitation process. Finally, it is clear that, dealing with gait biomechanics of people with amputation, the points of view of both the clinician and the engineer cannot be dissociated.

In the literature, an important number of authors investigated the gait of people with amputation but clinical and biomechanical analyses were not often confronted. Besides, a lot of studies were designed for level walking analysis. Studies on the locomotion in situations as slopes, stairs or cross slopes were not so frequent. More and more teams have now been interested in the locomotion in these situations but often have taken only one situation isolated from the others.

The present communication will aim at demonstrating that the biomechanical study of the locomotion of people with amputation necessitates taking into account simultaneously the different situations these people have to cope with in their daily living. We also want to show the importance of a permanent exchange between the clinician and the engineer in order to realize an efficient analysis of the biomechanical quantitative results of gait analysis. This is particularly true in a domain where the progresses of the patient are due to both the technology and the rehabilitation contributions.

http://dx.doi.org/10.1016/j.rehab.2012.07.279
Keywords: Knee orthoses; Knee braces; Finite elements; Mechanics

Introduction.– Knee conditions often lead to the prescription of knee orthoses for their “claimed” mechanical effects. The evaluation of these devices is currently based on biomechanical/pathophysiological studies or therapeutic trials [1,2]. However, data remain weak, highlighting methodological issues, a high variability of effects and arguably controversial results. This work is placed within the context of developing assessment methods adapted to medical devices.

Objectives.–
1. Mechanical characterization thanks to a numerical finite element model. A model featuring a generic leg braced with an orthosis whose design and fitting characteristics may vary.
2. Validation of the model based on physical (mechanical) measurements followed by a clinical validation.

Methods.–
Stage 1: development of a numerical model under Abaqus® featuring a deformable leg braced with an orthosis whose design and fitting characteristics are imposed in order to output the reaction forces/moments. First results about the comprehension and conceptual adjustments of orthoses will be discussed.

Discussion.– This evaluation method is going to be:
– adapted for different wearing conditions: tightening – skin adhesion;
– validated for “performance grading” of mass-produced orthoses (measurements with a metrology apparatus – instrumented simulator of knee movements);
– validated by clinical trials: anti-drawer effect with clinical analysis on functional scales and drawer measurements.

Thanks to this computational tool, novel brace designs can be tested and evaluated for an optimal mechanical efficiency of the devices and a better compliance of the patient to the treatment.

References

http://dx.doi.org/10.1016/j.rehab.2012.07.283

CO31-007-e

Efficacy and satisfaction of a lowered dynamical ankle-foot orthosis in chronic walking hemiparetic subjects
C. Perrin *, A. Condemine, P. Giraux
Service MPR, hôpital Bellevue, CHU de Saint-Étienne, 42055 Saint-Étienne, France
*Corresponding author.
E-mail address: caro.perrin42@orange.fr

Keywords: Stroke; Hemiparesis; Gait; Orthosis

Objectives.– To evaluate in chronic walking hemiparetic subjects the efficacy regarding the correction of the knee recurvatum and the walking performances of a lowered dynamical ankle-foot orthosis (D-AFO) in comparison with a prefabricated ankle-foot orthosis (P-AFO, Ottobock™) and shoes alone (SH). The secondary objective was to evaluate the satisfaction of the patients, with a focus on the putting of the orthosis and the shoes.

Methods.– The D-AFO is a carbon individually made orthosis, with a lowered articulation. Twenty chronic hemiparetic walking subjects were included in this single center comparative study. Gait quality was assessed on a GaitRite treadmill with a video recording performed with the D-AFO as compared to the P-AFO and shoes alone. The walking performances were assessed with a six minutes walking test and a Wade test with the D-AFO versus the P-AFO. The satisfaction was assessed with the ESAT-QUEST.

Results.– Walking with the D-AFO shows a significant improvement of the speed and quality of the gait as compare to shoes alone (walking time: 16.7 s ± 11 s versus 21.9 s ± 17 s, P = 0.04; FAP: 64 ± 18 versus 59 ± 16, P = 0.0018). The mean walking time and FAP are better with the D-AFO than with the P-AFO, but the statistical comparison doesn’t reach significance. The D-AFO allows a better quality and a better control of the knee recurvatum as compare to the P-AFO, and is also associated with a high level of patients’ satisfaction (ESAT-QUEST 43 ± 650).

Conclusion.– In a population of chronic walking hemiparetic patients with a knee recurvatum problem, the lowered D-AFO improves the gait quality and walking performances comparatively to a P-AFO and shoes alone. It is also associated to a high level of patients’ satisfaction especially regarding the putting of the orthosis and the shoe.

http://dx.doi.org/10.1016/j.rehab.2012.07.285

CO31-006-e

The strain distribution for the natural and implanted hip joint articulation
R. Duarte *, A. Ramos, C. Relvas, A. Completo, J. Simoes

Department of mechanical engineering, centre for mechanical technology and automation, university of Aveiro, campus Universitário de Santiago, 3810-193 Aveiro, Portugal
*Corresponding author.
E-mail address: sofmer2012@atout-org.com.

Keywords: Experimental models; Hip joint arthroplasty; Strain

Communication by Société de biomécanique.

http://dx.doi.org/10.1016/j.rehab.2012.07.284