135 research outputs found

    Land-Cover Change and the ‘‘Dust Bowl’’ Drought in the U.S. Great Plains

    Get PDF
    The North American Dust Bowl drought during the 1930s had devastating environmental and societal impacts. Comprehending the causes of the drought has been an ongoing effort in order to better predict similar droughts and mitigate their impacts. Among the potential causes of the drought are sea surface temperature (SST) anomalies in the tropical Pacific Ocean and strengthened local sinking motion as a feedback to degradation of the land surface condition leading up to and during the drought. Limitations on these causes are the lack of a strong tropical SST anomaly during the drought and lack of local anomaly in moisture supply to undercut the precipitation in the U.S. Great Plains. This study uses high-resolution modeling experiments and quantifies an effect of the particular Great Plains land cover in the 1930s that weakens the southerly moisture flux to the region. This effect lowers the average precipitation, making the Great Plains more susceptible to drought. When drought occurs, the land-cover effect enhances its intensity and prolongs its duration. Results also show that this land-cover effect is comparable in magnitude to the effect of the 1930s large-scale circulation anomaly. Finally, analysis of the relationship of these two effects suggests that while lowering the precipitation must have contributed to the Dust Bowl drought via the 1930s land-cover effect, the initiation of and recovery from that drought would likely result from large-scale circulation changes, either of chaotic origin or resulting from combinations of weak SST anomalies and other forcing

    Las playas de Tulum en la Riviera maya mexicana: caracterización y diagnóstico como base del manejo integrado costero

    Get PDF
    En el contexto del Programa Hacia la Certificación de la Calidad de las Playas de Tulum, que viene desarrollando la Unidad de Atención a Playas - Tulum, adscripta a la Fundación Orígenes de Quintana Roo (México), durante el primer trimestre del año 2008 se realizó un exhaustivo trabajo de campo que permitió actualizar la Caracterización general y el Diagnóstico físico-ambiental de este sector costero. En este trabajo se presenta una descripción sintetizada de los rasgos físicogeográficos de las playas y se identifican los principales problemas ambientales que las afectan actualmente, para finalmente esbozar los lineamientos generales que perrrútirán continuar avanzando hacia la conformación de un Programa de Manejo integrado costero y Certificación de las playas de Tulum.By the context of the "Programa Hacia la Certificación de la Calidad de las Playas de Tulum", which is developing by the "Unidad de Atención a Playas - Tulum" , attached to the "Fundación Orígenes de Quintana Roo" (Mexico), during the first quarter of 2008, was a comprehensive work allowing field upgrade a physical-environment characterization and diagnostics of this coastal sector. This paper presents a summary description of the physical-geographical features of the beaches and identifies the main environmental problems that affect them now, and finally outline the general guidelines that allow us to continue moving toward the establishment of an Integrated Coastal Management Program and Certification from the beaches of Tulum

    The proinflammatory cytokine interleukin 18 regulates feeding by acting on the bed nucleus of the stria terminalis

    Get PDF
    The proinflammatory cytokine IL-18 has central anorexigenic effects and was proposed to contribute to loss of appetite observed during sickness. Here we tested in the mouse the hypothesis that IL-18 can decrease food intake by acting on neurons of the bed nucleus of the stria terminalis (BST), a component of extended amygdala recently shown to influence feeding via its projections to the lateral hypothalamus (LH). We found that both subunits of the heterodimeric IL-18 receptor are highly expressed in the BST and that local injection of recombinant IL-18 (50 ng/ml) significantly reduced c-fos activation and food intake for at least 6 h. Electrophysiological experiments performed in BST brain slices demonstrated that IL-18 strongly reduces the excitatory input on BST neurons through a presynaptic mechanism. The effects of IL-18 are cell-specific and were observed in Type III but not in Type I/II neurons. Interestingly, IL-18-sensitve Type III neurons were recorded in the juxtacapsular BST, a region that contains BST-LH projecting neurons. Reducing the excitatory input on Type III GABAergic neurons, IL-18 can increase the firing of glutamatergic LH neurons through a disinhibitory mechanism. Imbalance between excitatory and inhibitory activity in the LH can induce changes in food intake. Effects of IL-18 were mediated by the IL-18R because they were absent in neurons from animals null for IL-18Rα (Il18ra-/-), which lack functional IL-18 receptors. In conclusion, our data show that IL-18 may inhibit feeding by inhibiting the activity of BST Type III GABAergic neurons

    The proinflammatory cytokine interleukin 18 regulates feeding by acting on the bed nucleus of the stria terminalis

    Get PDF
    The proinflammatory cytokine IL-18 has central anorexigenic effects and was proposed to contribute to loss of appetite observed during sickness. Here we tested in the mouse the hypothesis that IL-18 can decrease food intake by acting on neurons of the bed nucleus of the stria terminalis (BST), a component of extended amygdala recently shown to influence feeding via its projections to the lateral hypothalamus (LH). We found that both subunits of the heterodimeric IL-18 receptor are highly expressed in the BST and that local injection of recombinant IL-18 (50 ng/ml) significantly reduced c-fos activation and food intake for at least 6 h. Electrophysiological experiments performed in BST brain slices demonstrated that IL-18 strongly reduces the excitatory input on BST neurons through a presynaptic mechanism. The effects of IL-18 are cell-specific and were observed in Type III but not in Type I/II neurons. Interestingly, IL-18-sensitve Type III neurons were recorded in the juxtacapsular BST, a region that contains BST-LH projecting neurons. Reducing the excitatory input on Type III GABAergic neurons, IL-18 can increase the firing of glutamatergic LH neurons through a disinhibitory mechanism. Imbalance between excitatory and inhibitory activity in the LH can induce changes in food intake. Effects of IL-18 were mediated by the IL-18R because they were absent in neurons from animals null for IL-18R\u3b1 (Il18ra-/-), which lack functional IL-18 receptors. In conclusion, our data show that IL-18 may inhibit feeding by inhibiting the activity of BST Type III GABAergic neurons

    An Engineering Approach to Extending Lifespan in C. elegans

    Get PDF
    We have taken an engineering approach to extending the lifespan of Caenorhabditis elegans. Aging stands out as a complex trait, because events that occur in old animals are not under strong natural selection. As a result, lifespan can be lengthened rationally using bioengineering to modulate gene expression or to add exogenous components. Here, we engineered longer lifespan by expressing genes from zebrafish encoding molecular functions not normally present in worms. Additionally, we extended lifespan by increasing the activity of four endogenous worm aging pathways. Next, we used a modular approach to extend lifespan by combining components. Finally, we used cell- and worm-based assays to analyze changes in cell physiology and as a rapid means to evaluate whether multi-component transgenic lines were likely to have extended longevity. Using engineering to add novel functions and to tune endogenous functions provides a new framework for lifespan extension that goes beyond the constraints of the worm genome

    Prostaglandin profiling reveals a role for haematopoietic prostaglandin D synthase in adipose tissue macrophage polarisation in mice and humans.

    Get PDF
    BACKGROUND/OBJECTIVES: Obesity has been associated with both changes in adipose tissue lipid metabolism and inflammation. A key class of lipid-derived signalling molecules involved in inflammation are the prostaglandins. In this study, we aimed to determine how obesity affects the levels of prostaglandins within white adipose tissue (WAT) and determine which cells within adipose tissue produce them. To avoid the effects of cellular stress on prostaglandin levels, we developed a multivariate statistical approach in which metabolite concentrations and transcriptomic data were integrated, allowing the assignment of metabolites to cell types. SUBJECTS/METHODS: Eicosanoids were measured by liquid chromatography-tandem mass spectrometry and mRNA levels using real-time PCR. Eicosanoid levels and transcriptomic data were combined using principal component analysis and hierarchical clustering in order to associate metabolites with cell types. Samples were obtained from C57Bl/6 mice aged 16 weeks. We studied the ob/ob genetically obese mouse model and diet-induced obesity model. We extended our results in mice to a cohort of morbidly obese humans undergoing bariatric surgery. RESULTS: Using our modelling approach, we determined that prostglandin Dâ‚‚ (PGDâ‚‚) in adipose tissue was predominantly produced in macrophages by the haematopoietic isoform of prostaglandin D synthase (H-Pgds). Analysis of sub-fractionated WAT confirmed that H-Pgds was expressed in adipose tissue macrophages (ATMs). Furthermore, H-Pgds expression in ATMs isolated from lean and obese mice was consistent with it affecting macrophage polarisation. Functionally, we demonstrated that H-PGDS-produced PGDâ‚‚ polarised macrophages toward an M2, anti-inflammatory state. In line with a potential anti-inflammatory role, we found that H-PGDS expression in ATMs was positively correlated with both peripheral insulin and adipose tissue insulin sensitivity in humans. CONCLUSIONS: In this study, we have developed a method to determine the cellular source of metabolites within an organ and used it to identify a new role for PGDâ‚‚ in the control of ATM polarisation.HQL-79 was a kind gift of Professor Yoshihiro Urade. Professor Vidal-Puig was funded by the BHF, MRC and BBSRC. Dr Virtue was funded by the BBSRC and the BHF. Dr Eiden, Dr Masoodi and Dr Griffin were funded by the MRC. Dr Mok was funded by the Wellcome Trust.This is the final published version. It first appeared at http://www.nature.com/ijo/journal/vaop/ncurrent/full/ijo201534a.htm

    Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases

    Get PDF
    Age-associated neurodegenerative disorders such as Alzheimer’s disease are a major public health challenge, due to the demographic increase in the proportion of older individuals in society. However, the relatively few currently approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotective mechanisms that decline with ageing. This requires model systems that can recapitulate key features of human neurodegenerative diseases that are also amenable to compound screening approaches. Mammalian models are very powerful, but are prohibitively expensive for high-throughput drug screens. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for neuroprotective compound screening. Here we describe how C. elegans has been used to model various human ageing-associated neurodegenerative diseases and provide an extensive list of compounds that have therapeutic activity in these worm models and so may have translational potential

    Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila

    Get PDF
    The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has been proposed to be a candidate for enhanced clearance of toxic Aβ amyloid. In this study we have studied the potency of feeding curcumin as a drug candidate to alleviate Aβ toxicity in transgenic Drosophila. The longevity as well as the locomotor activity of five different AD model genotypes, measured relative to a control line, showed up to 75% improved lifespan and activity for curcumin fed flies. In contrast to the majority of studies of curcumin effects on amyloid we did not observe any decrease in the amount of Aβ deposition following curcumin treatment. Conformation-dependent spectra from p-FTAA, a luminescent conjugated oligothiophene bound to Aβ deposits in different Drosophila genotypes over time, indicated accelerated pre-fibrillar to fibril conversion of Aβ1–42 in curcumin treated flies. This finding was supported by in vitro fibrillation assays of recombinant Aβ1–42. Our study shows that curcumin promotes amyloid fibril conversion by reducing the pre-fibrillar/oligomeric species of Aβ, resulting in a reduced neurotoxicity in Drosophila

    The role of inflammation in epilepsy.

    Get PDF
    Epilepsy is the third most common chronic brain disorder, and is characterized by an enduring predisposition to generate seizures. Despite progress in pharmacological and surgical treatments of epilepsy, relatively little is known about the processes leading to the generation of individual seizures, and about the mechanisms whereby a healthy brain is rendered epileptic. These gaps in our knowledge hamper the development of better preventive treatments and cures for the approximately 30% of epilepsy cases that prove resistant to current therapies. Here, we focus on the rapidly growing body of evidence that supports the involvement of inflammatory mediators-released by brain cells and peripheral immune cells-in both the origin of individual seizures and the epileptogenic process. We first describe aspects of brain inflammation and immunity, before exploring the evidence from clinical and experimental studies for a relationship between inflammation and epilepsy. Subsequently, we discuss how seizures cause inflammation, and whether such inflammation, in turn, influences the occurrence and severity of seizures, and seizure-related neuronal death. Further insight into the complex role of inflammation in the generation and exacerbation of epilepsy should yield new molecular targets for the design of antiepileptic drugs, which might not only inhibit the symptoms of this disorder, but also prevent or abrogate disease pathogenesis
    • …
    corecore