297 research outputs found
INFLUENCE OF NORMS AND METHODS OF PLANT GROWTH REGULATOR VERMYSTYM APPLICATION ON QUALITY INDICATORS AND PRODUCTIVITY OF POTATO
The article investigates the effect of different norms and methods of plant growth regulator Vermystym application on plant height, number of stems in a bush, stand density, yield and quality of two varieties of potato tubers. It is found that pre-planting cultivation of potato tubers with Vermystym in a dose of 8 l/t and double spraying of potato tops of mid-season potato variety Roko and middle-late potato variety Picasso in periods of bud-formation and blooming at a rate of 14l/ha increased the number of stems, average potato weight yield, and the content of dry matter and starch. According to the conducted research, an environmentally-friendly potato production gain method is developed
Energy Dependence of Moments of Net-Proton Multiplicity Distributions at RHIC
We report the beam energy(√8NN = 7.7-200 GeV) and collision centrality dependence of the mean (M), standard deviation (σ), skewness (S), and kurtosis (κ) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y|\u3c0.5) and within the transverse momentum range 0.4\u3cρτ\u3c0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the quantum chromodynamic phase diagram. The products of the moments, Sσ and κσ2, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and antiproton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation and also to a hadron resonance gas model
System size and energy dependence of near-side di-hadron correlations
Two-particle azimuthal () and pseudorapidity ()
correlations using a trigger particle with large transverse momentum () in
+Au, Cu+Cu and Au+Au collisions at =\xspace 62.4 GeV and
200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is
separated into a jet-like component, narrow in both and
, and the ridge, narrow in but broad in .
Both components are studied as a function of collision centrality, and the
jet-like correlation is studied as a function of the trigger and associated
. The behavior of the jet-like component is remarkably consistent for
different collision systems, suggesting it is produced by fragmentation. The
width of the jet-like correlation is found to increase with the system size.
The ridge, previously observed in Au+Au collisions at = 200
GeV, is also found in Cu+Cu collisions and in collisions at
=\xspace 62.4 GeV, but is found to be substantially smaller at
=\xspace 62.4 GeV than at = 200 GeV for the
same average number of participants ().
Measurements of the ridge are compared to models.Comment: 17 pages, 14 figures, submitted to Phys. Rev.
Isolation of Flow and Nonflow Correlations by Two- and Four-Particle Cumulant Measurements of Azimuthal Harmonics in 200 GeV Au+Au Collisions
A data-driven method was applied to measurements of Au+Au collisions at
200 GeV made with the STAR detector at RHIC to isolate
pseudorapidity distance -dependent and -independent
correlations by using two- and four-particle azimuthal cumulant measurements.
We identified a component of the correlation that is -independent,
which is likely dominated by anisotropic flow and flow fluctuations. It was
also found to be independent of within the measured range of
pseudorapidity . The relative flow fluctuation was found to be for particles of transverse momentum
less than GeV/. The -dependent part may be attributed to
nonflow correlations, and is found to be relative to the
flow of the measured second harmonic cumulant at
Charged-to-neutral correlation at forward rapidity in Au+Au collisions at =200 GeV
Event-by-event fluctuations of the ratio of inclusive charged to photon
multiplicities at forward rapidity in Au+Au collision at =200
GeV have been studied. Dominant contribution to such fluctuations is expected
to come from correlated production of charged and neutral pions. We search for
evidences of dynamical fluctuations of different physical origins. Observables
constructed out of moments of multiplicities are used as measures of
fluctuations. Mixed events and model calculations are used as baselines.
Results are compared to the dynamical net-charge fluctuations measured in the
same acceptance. A non-zero statistically significant signal of dynamical
fluctuations is observed in excess to the model prediction when charged
particles and photons are measured in the same acceptance. We find that, unlike
dynamical net-charge fluctuation, charge-neutral fluctuation is not dominated
by correlation due to particle decay. Results are compared to the expectations
based on the generic production mechanism of pions due to isospin symmetry, for
which no significant (<1%) deviation is observed.Comment: 14 pages, 6 figure
Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons
We report first results from an analysis based on a new multi-hadron
correlation technique, exploring jet-medium interactions and di-jet surface
emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons
are used for triggers to study associated hadron distributions. In contrast
with two- and three-particle correlations with a single trigger with similar
kinematic selections, the associated hadron distribution of both trigger sides
reveals no modification in either relative pseudo-rapidity or relative
azimuthal angle from d+Au to central Au+Au collisions. We determine associated
hadron yields and spectra as well as production rates for such correlated
back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure
Beam energy dependent two-pion interferometry and the freeze-out eccentricity of pions in heavy ion collisions at STAR
We present results of analyses of two-pion interferometry in Au+Au collisions
at = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV measured in the
STAR detector as part of the RHIC Beam Energy Scan program. The extracted
correlation lengths (HBT radii) are studied as a function of beam energy,
azimuthal angle relative to the reaction plane, centrality, and transverse mass
() of the particles. The azimuthal analysis allows extraction of the
eccentricity of the entire fireball at kinetic freeze-out. The energy
dependence of this observable is expected to be sensitive to changes in the
equation of state. A new global fit method is studied as an alternate method to
directly measure the parameters in the azimuthal analysis. The eccentricity
shows a monotonic decrease with beam energy that is qualitatively consistent
with the trend from all model predictions and quantitatively consistent with a
hadronic transport model.Comment: 27 pages; 27 figure
- …