2,357 research outputs found

    Optical coherence tomography and non-linear microscopy for paintings ā€“ a study of the complementary capabilities and laser degradation effects

    Get PDF
    This paper examines for the first time the potential complementary imaging capabilities of Optical coherence tomography (OCT) and non-linear microscopy (NLM) for multi-modal 3D examination of paintings following the successful application of OCT to the in situ, non-invasive examination of varnish and paint stratigraphy of historic paintings and the promising initial studies of NLM of varnish samples. OCT provides image contrast through the optical scattering and absorption properties of materials, while NLM provides molecular information through multi-photon fluorescence and higher harmonics generation (second and third harmonic generation). OCT is well-established in the in situ non-invasive imaging of the stratigraphy of varnish and paint layers. While NLM examination of transparent samples such as fresh varnish and some transparent paints showed promising results, the ultimate use of NLM on paintings is limited owing to the laser degradation effects caused by the high peak intensity of the laser source necessary for the generation of non-linear phenomena. The high intensity normally employed in NLM is found to be damaging to all non-transparent painting materials from slightly scattering degraded varnish to slightly absorbing paint at the wavelength of the laser excitation source. The results of this paper are potentially applicable to a wide range of materials given the diversity of the materials encountered in paintings (e.g. minerals, plants, insects, oil, egg, synthetic and natural varnish)

    What is nursing? A phenomenological analysis of the characteristics of Chinese nursing

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Staphylococcus aureus Isolates Carrying Panton-Valentine Leucocidin Genes: Their Frequency, Antimicrobial Patterns, and Association With Infectious Disease in Shahrekord City, Southwest Iran

    Get PDF
    Background: A diversity of virulence factors work together to create the pathogenicity of Staphylococcus aureus. These factors include cell surface components that promote adherence to surfaces as well as exoproteins such as Panton-Valentine leukocidin (PVL), encoded by the luk-PV genes, that invade or bypass the immune system and are toxic to the host, thereby enhancing the severity of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Objectives: The aim of this study was to determine the frequency of PVL-positive MRSA strains by real-time PCR and their antibiotic susceptibility patterns by phenotypic test. Materials and Methods: In total, 284 Staphylococcus isolates, identified by phenotypic methods from clinical samples of Shahrekord University Hospitals, Shahrekord, Iran, were tested for nuc, mecA, and PVL genes by TaqMan real-time PCR. The antibiotic susceptibility patterns of PVL-containing MRSA strains were determined via the disk diffusion method. Results: In total, 196 isolates (69%) were nuc positive (i.e., S. aureus); of those isolates, 96 (49%) were mecA positive (MRSA). Eighteen (18.8%) of the 96 MRSA positive and 3 (3%) of the 100 methicillin-susceptible Staphylococcus aureus (MSSA) strains were PVL positive. PVL-positive MRSA strains were mostly recovered from tracheal specimens. Eight PVL-positive MRSA strains were resistant to all the tested antibiotics except vancomycin. A significant correlation (P = 0.001) was found between the mecA positivity and the presence of luk-PV genes. Conclusions: Community acquired (CA)-MRSA is becoming a public health concern in many parts of the world, including Asian countries. The variable prevalence of luk-PV-positive MRSA isolates in different regions and their rather high frequency in pneumonia necessitate the application of rapid diagnostic methods such as real-time PCR to improve treatment effectiveness

    A loop of cancer-stroma-cancer interaction promotes peritoneal metastasis of ovarian cancer via TNFĪ±-TGFĪ±-EGFR.

    Get PDF
    Peritoneum is the most common site for ovarian cancer metastasis. Here we investigate how cancer epigenetics regulates reciprocal tumor-stromal interactions in peritoneal metastasis of ovarian cancer. Firstly, we find that omental stromal fibroblasts enhance colony formation of metastatic ovarian cancer cells, and de novo expression of transforming growth factor-alpha (TGF-Ī±) is induced in stromal fibroblasts co-cultured with ovarian cancer cells. We also observed an over-expression of tumor necrosis factor-alpha (TNF-Ī±) in ovarian cancer cells, which is regulated by promoter DNA hypomethylation as well as chromatin remodeling. Interestingly, this ovarian cancer-derived TNF-Ī± induces TGF-Ī± transcription in stromal fibroblasts through nuclear factor-ĪŗB (NF-ĪŗB). We further show that TGF-Ī± secreted by stromal fibroblasts in turn promotes peritoneal metastasis of ovarian cancer through epidermal growth factor receptor (EGFR) signaling. Finally, we identify a TNFĪ±-TGFĪ±-EGFR interacting loop between tumor and stromal compartments of human omental metastases. Our results therefore demonstrate cancer epigenetics induces a loop of cancer-stroma-cancer interaction in omental microenvironment that promotes peritoneal metastasis of ovarian cancer cells via TNFĪ±-TGFĪ±-EGFR

    Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling

    Get PDF
    Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP(-/-) mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, beta-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.NWO ZonMw [MKMD 40-42600-98-13007]; FCT [SFRH/BPD/70277/2010]info:eu-repo/semantics/publishedVersio

    A non-invasive investigation of Limoges enamels using both Optical Coherence Tomography (OCT) and spectral imaging: a pilot study

    Get PDF
    This paper investigates the use of Optical Coherence Tomography (OCT) and Short-wave Infrared (SWIR) spectral imaging to study the deterioration of a Limoges enamel panel. Limoges enamels are formed of glass layers applied on a metal substrate and are prone to ā€˜glass diseaseā€™. However, the level of deterioration in Limoges enamels is generally difficult to assess visually. In this study, SWIR was used to produce a hydration level map of the enamel, which was coupled with virtual OCT cross-sections. The study shows a good correlation between levels of hydration and structural damage over the enamel panel. Hydration mapping allows visualisation of structural damage across the entire enamel in one image

    Local structural alignment of RNA with affine gap model

    Get PDF
    BACKGROUND: Predicting new non-coding RNAs (ncRNAs) of a family can be done by aligning the potential candidate with a member of the family with known sequence and secondary structure. Existing tools either only consider the sequence similarity or cannot handle local alignment with gaps. RESULTS: In this paper, we consider the problem of finding the optimal local structural alignment between a query RNA sequence (with known secondary structure) and a target sequence (with unknown secondary structure) with the affine gap penalty model. We provide the algorithm to solve the problem. CONCLUSIONS: Based on an experiment, we show that there are ncRNA families in which considering local structural alignment with gap penalty model can identify real hits more effectively than using global alignment or local alignment without gap penalty model.published_or_final_versio

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity

    Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.

    Get PDF
    BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNĪ², released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice
    • ā€¦
    corecore