214 research outputs found

    Loss of heterozygosity is related to p53 mutations and smoking in lung cancer

    Get PDF
    Carcinogenesis results from an accumulation of several genetic alterations. Mutations in the p53 gene are frequent and occur at an early stage of lung carcinogenesis. Loss of multiple chromosomal regions is another genetic alteration frequently found in lung tumours. We have examined the association between p53 mutations, loss of heterozygosity (LOH) at frequently deleted loci in lung cancer, and tobacco exposure in 165 tumours from non-small cell lung cancer (NSCLC) patients. A highly significant association between p53 mutations and deletions on 3p, 5q, 9p, 11p and 17p was found. There was also a significant correlation between deletions at these loci. 86% of the tumours with concordant deletion in the 4 most involved loci (3p21, 5q11–13, 9p21 and 17p13) had p53 mutations as compared to only 8% of the tumours without deletions at the corresponding loci (P< 0.0001). Data were also examined in relation to smoking status of the patients and histology of the tumours. The frequency of deletions was significantly higher among smokers as compared to non-smokers. This difference was significant for the 3p21.3 (hMLH1 locus), 3p14.2 (FHIT locus), 5q11–13 (hMSH3 locus) and 9p21 (D9S157 locus). Tumours with deletions at the hMLH1 locus had higher levels of hydrophobic DNA adducts. Deletions were more common in squamous cell carcinomas than in adenocarcinomas. Covariate analysis revealed that histological type and p53 mutations were significant and independent parameters for predicting LOH status at several loci. In the pathogenesis of NSCLC exposure to tobacco carcinogens in addition to clonal selection may be the driving force in these alterations. © 2001 Cancer Research Campaign http://www.bjcancer.co

    A rare missense mutation in CHRNA4 associates with smoking behavior and its consequences

    Get PDF
    Using Icelandic whole-genome sequence data and an imputation approach we searched for rare sequence variants in CHRNA4 and tested them for association with nicotine dependence. We show that carriers of a rare missense variant (allele frequency = 0.24%) within CHRNA4, encoding an R336C substitution, have greater risk of nicotine addiction than non-carriers as assessed by the Fagerstrom Test for Nicotine Dependence (P= 1.2 × 10−4). The variant also confers risk of several serious smoking-related diseases previously shown to be associated with the D398N substitution in CHRNA5. We observed odds ratios (ORs) of 1.7–2.3 for lung cancer(LC;P= 4.0 × 10−4), chronic obstructive pulmonary disease (COPD;P= 9.3 × 10−4), peripheral artery disease (PAD;P= 0.090) and abdominal aortic aneurysms (AAAs; P= 0.12), and the variant associates strongly with the early-onset forms of LC (OR = 4.49,P= 2.2 × 10−4), COPD (OR = 3.22,P= 2.9 × 10−4), PAD (OR = 3.47,P= 9.2 × 10−3) and AAA (OR = 6.44, P= 6.3 × 10−3). Joint analysis of the four smoking-related diseases reveals significant association (P= 6.8 × 10−5), particularly for early-onset cases (P=2.1 × 10−7). Our results are in agreement with functional studies showing that the human α4β2 isoform of the channel containing R336C has less sensitivity for its agonists than the wild-type form following nicotine incubation

    Genome‐wide association study of INDELs identified four novel susceptibility loci associated with lung cancer risk

    Get PDF
    Genome‐wide association studies (GWAS) have identified 45 susceptibility loci associated with lung cancer. Only less than SNPs, small insertions and deletions (INDELs) are the second most abundant genetic polymorphisms in the human genome. INDELs are highly associated with multiple human diseases, including lung cancer. However, limited studies with large‐scale samples have been available to systematically evaluate the effects of INDELs on lung cancer risk. Here, we performed a large‐scale meta‐analysis to evaluate INDELs and their risk for lung cancer in 23,202 cases and 19,048 controls. Functional annotations were performed to further explore the potential function of lung cancer risk INDELs. Conditional analysis was used to clarify the relationship between INDELs and SNPs. Four new risk loci were identified in genome‐wide INDEL analysis (1p13.2: rs5777156, Insertion, OR = 0.92, P = 9.10 × 10−8; 4q28.2: rs58404727, Deletion, OR = 1.19, P = 5.25 × 10−7; 12p13.31: rs71450133, Deletion, OR = 1.09, P = 8.83 × 10−7; and 14q22.3: rs34057993, Deletion, OR = 0.90, P = 7.64 × 10−8). The eQTL analysis and functional annotation suggested that INDELs might affect lung cancer susceptibility by regulating the expression of target genes. After conducting conditional analysis on potential causal SNPs, the INDELs in the new loci were still nominally significant. Our findings indicate that INDELs could be potentially functional genetic variants for lung cancer risk. Further functional experiments are needed to better understand INDEL mechanisms in carcinogenesis

    Network-Based Elucidation of Human Disease Similarities Reveals Common Functional Modules Enriched for Pluripotent Drug Targets

    Get PDF
    Current work in elucidating relationships between diseases has largely been based on pre-existing knowledge of disease genes. Consequently, these studies are limited in their discovery of new and unknown disease relationships. We present the first quantitative framework to compare and contrast diseases by an integrated analysis of disease-related mRNA expression data and the human protein interaction network. We identified 4,620 functional modules in the human protein network and provided a quantitative metric to record their responses in 54 diseases leading to 138 significant similarities between diseases. Fourteen of the significant disease correlations also shared common drugs, supporting the hypothesis that similar diseases can be treated by the same drugs, allowing us to make predictions for new uses of existing drugs. Finally, we also identified 59 modules that were dysregulated in at least half of the diseases, representing a common disease-state “signature”. These modules were significantly enriched for genes that are known to be drug targets. Interestingly, drugs known to target these genes/proteins are already known to treat significantly more diseases than drugs targeting other genes/proteins, highlighting the importance of these core modules as prime therapeutic opportunities

    Transcriptome-wide association study reveals candidate causal genes for lung cancer.

    Full text link
    We have recently completed the largest GWAS on lung cancer including 29,266 cases and 56,450 controls of European descent. The goal of our study has been to integrate the complete GWAS results with a large-scale expression quantitative trait loci (eQTL) mapping study in human lung tissues (n = 1,038) to identify candidate causal genes for lung cancer. We performed transcriptome-wide association study (TWAS) for lung cancer overall, by histology (adenocarcinoma, squamous cell carcinoma and small cell lung cancer) and smoking subgroups (never- and ever-smokers). We performed replication analysis using lung data from the Genotype-Tissue Expression (GTEx) project. DNA damage assays were performed in human lung fibroblasts for selected TWAS genes. As expected, the main TWAS signal for all histological subtypes and ever-smokers was on chromosome 15q25. The gene most strongly associated with lung cancer at this locus using the TWAS approach was IREB2 (pTWAS = 1.09E-99), where lower predicted expression increased lung cancer risk. A new lung adenocarcinoma susceptibility locus was revealed on 9p13.3 and associated with higher predicted expression of AQP3 (pTWAS = 3.72E-6). Among the 45 previously described lung cancer GWAS loci, we mapped candidate target gene for 17 of them. The association AQP3-adenocarcinoma on 9p13.3 was replicated using GTEx (pTWAS = 6.55E-5). Consistent with the effect of risk alleles on gene expression levels, IREB2 knockdown and AQP3 overproduction promote endogenous DNA damage. These findings indicate genes whose expression in lung tissue directly influences lung cancer risk

    I am hiQ—a novel pair of accuracy indices for imputed genotypes

    Get PDF
    Background: Imputation of untyped markers is a standard tool in genome-wide association studies to close the gap between directly genotyped and other known DNA variants. However, high accuracy with which genotypes are imputed is fundamental. Several accuracy measures have been proposed and some are implemented in imputation software, unfortunately diversely across platforms. In the present paper, we introduce Iam hiQ, an independent pair of accuracy measures that can be applied to dosage files, the output of all imputation software. Iam (imputation accuracy measure) quantifies the average amount of individual-specific versus population-specific genotype information in a linear manner. hiQ (heterogeneity in quantities of dosages) addresses the inter-individual heterogeneity between dosages of a marker across the sample at hand. Results: Applying both measures to a large case–control sample of the International Lung Cancer Consortium (ILCCO), comprising 27,065 individuals, we found meaningful thresholds for Iam and hiQ suitable to classify markers of poor accuracy. We demonstrate how Manhattan-like plots and moving averages of Iam and hiQ can be useful to identify regions enriched with less accurate imputed markers, whereas these regions would by missed when applying the accuracy measure info (implemented in IMPUTE2). Conclusion: We recommend using Iam hiQ additional to other accuracy scores for variant filtering before stepping into the analysis of imputed GWAS data

    Genome-wide association meta-analysis identifies pleiotropic risk loci for aerodigestive squamous cell cancers

    Get PDF
    Squamous cell carcinomas (SqCC) of the aerodigestive tract have similar etiological risk factors. Although genetic risk variants for individual cancers have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. To identify novel and pleotropic SqCC risk variants, we performed a meta-analysis of GWAS data on lung SqCC (LuSqCC), oro/pharyngeal SqCC (OSqCC), laryngeal SqCC (LaSqCC) and esophageal SqCC (ESqCC) cancers, totaling 13,887 cases and 61,961 controls of European ancestry. We identified one novel genome-wide significant (Pmeta&lt;5x10-8) aerodigestive SqCC susceptibility loci in the 2q33.1 region (rs56321285, TMEM273). Additionally, three previously unknown loci reached suggestive significance (Pmeta&lt;5x10-7): 1q32.1 (rs12133735, near MDM4), 5q31.2 (rs13181561, TMEM173) and 19p13.11 (rs61494113, ABHD8). Multiple previously identified loci for aerodigestive SqCC also showed evidence of pleiotropy in at least another SqCC site, these include: 4q23 (ADH1B), 6p21.33 (STK19), 6p21.32 (HLA-DQB1), 9p21.33 (CDKN2B-AS1) and 13q13.1(BRCA2). Gene-based association and gene set enrichment identified a set of 48 SqCC-related genes to DNA damage and epigenetic regulation pathways. Our study highlights the importance of cross-cancer analyses to identify pleiotropic risk loci of histology-related cancers arising at distinct anatomical sites

    Analysis of variants in DNA damage signalling genes in bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemicals from occupational exposure and components of cigarette smoke can cause DNA damage in bladder urothelium. Failure to repair DNA damage by DNA repair proteins may result in mutations leading to genetic instability and the development of bladder cancer. Immunohistochemistry studies have shown DNA damage signal activation in precancerous bladder lesions which is lost on progression, suggesting that the damage signalling mechanism acts as a brake to further tumorigenesis. Single nucleotide polymorphisms (SNPs) in DSB signalling genes may alter protein function. We hypothesized that SNPs in DSB signalling genes may modulate predisposition to bladder cancer and influence the effects of environmental exposures.</p> <p>Methods</p> <p>We recruited 771 cases and 800 controls (573 hospital-based and 227 population-based from a previous case-control study) and interviewed them regarding their smoking habits and occupational history. DNA was extracted from a peripheral blood sample and genotyping of 24 SNPs in <it>MRE11, NBS1, RAD50, H2AX </it>and <it>ATM </it>was undertaken using an allelic discrimination method (Taqman).</p> <p>Results</p> <p>Smoking and occupational dye exposure were strongly associated with bladder cancer risk. Using logistic regression adjusting for age, sex, smoking and occupational dye exposure, there was a marginal increase in risk of bladder cancer for an <it>MRE11 </it>3'UTR SNP (rs2155209, adjusted odds ratio 1.54 95% CI (1.13–2.08, p = 0.01) for individuals homozygous for the rare allele compared to those carrying the common homozygous or heterozygous genotype). However, in the hospital-based controls, the genotype distribution for this SNP deviated from Hardy-Weinberg equilibrium. None of the other SNPs showed an association with bladder cancer and we did not find any significant interaction between any of these polymorphisms and exposure to smoking or dye exposure.</p> <p>Conclusion</p> <p>Apart from a possible effect for one MRE11 3'UTR SNP, our study does not support the hypothesis that SNPs in DSB signaling genes modulate predisposition to bladder cancer.</p

    Gene–gene interaction of AhRwith and within the Wntcascade affects susceptibility to lung cancer

    Get PDF
    Background: Aberrant Wnt signalling, regulating cell development and stemness, influences the development of many cancer types. The Aryl hydrocarbon receptor (AhR) mediates tumorigenesis of environmental pollutants. Complex interaction patterns of genes assigned to AhR/Wnt-signalling were recently associated with lung cancer susceptibility. Aim: To assess the association and predictive ability of AhR/Wnt-genes with lung cancer in cases and controls of European descent. Methods: Odds ratios (OR) were estimated for genomic variants assigned to the Wnt agonist and the antagonistic genes DKK2, DKK3, DKK4, FRZB, SFRP4 and Axin2. Logistic regression models with variable selection were trained, validated and tested to predict lung cancer, at which other previously identified SNPs that have been robustly associated with lung cancer risk could also enter the model. Furthermore, decision trees were created to investigate variant × variant interaction. All analyses were performed for overall lung cancer and for subgroups. Results: No genome-wide significant association of AhR/Wnt-genes with overall lung cancer was observed, but within the subgroups of ever smokers (e.g., maker rs2722278 SFRP4; OR = 1.20; 95% CI 1.13–1.27; p = 5.6 × 10–10) and never smokers (e.g., maker rs1133683 Axin2; OR = 1.27; 95% CI 1.19–1.35; p = 1.0 × 10–12). Although predictability is poor, AhR/Wnt-variants are unexpectedly overrepresented in optimized prediction scores for overall lung cancer and for small cell lung cancer. Remarkably, the score for never-smokers contained solely two AhR/Wnt-variants. The optimal decision tree for never smokers consists of 7 AhR/Wnt-variants and only two lung cancer variants. Conclusions: The role of variants belonging to Wnt/AhR-pathways in lung cancer susceptibility may be underrated in main-effects association analysis. Complex interaction patterns in individuals of European descent have moderate predictive capacity for lung cancer or subgroups thereof, especially in never smokers

    Genetic Risk Can Be Decreased: Quitting Smoking Decreases and Delays Lung Cancer for Smokers With High and Low CHRNA5 Risk Genotypes - A Meta-analysis.

    Get PDF
    BACKGROUND: Recent meta-analyses show that individuals with high risk variants in CHRNA5 on chromosome 15q25 are likely to develop lung cancer earlier than those with low-risk genotypes. The same high-risk genetic variants also predict nicotine dependence and delayed smoking cessation. It is unclear whether smoking cessation confers the same benefits in terms of lung cancer risk reduction for those who possess CHRNA5 risk variants versus those who do not. METHODS: Meta-analyses examined the association between smoking cessation and lung cancer risk in 15 studies of individuals with European ancestry who possessed varying rs16969968 genotypes (N=12,690 ever smokers, including 6988 cases of lung cancer and 5702 controls) in the International Lung Cancer Consortium. RESULTS: Smoking cessation (former vs. current smokers) was associated with a lower likelihood of lung cancer (OR=0.48, 95%CI=0.30-0.75, p=0.0015). Among lung cancer patients, smoking cessation was associated with a 7-year delay in median age of lung cancer diagnosis (HR=0.68, 95%CI=0.61-0.77, p=4.9∗10(-10)). The CHRNA5 rs16969968 risk genotype (AA) was associated with increased risk and earlier diagnosis for lung cancer, but the beneficial effects of smoking cessation were very similar in those with and without the risk genotype. CONCLUSION: We demonstrate that quitting smoking is highly beneficial in reducing lung cancer risks for smokers regardless of their CHRNA5 rs16969968 genetic risk status. Smokers with high-risk CHRNA5 genotypes, on average, can largely eliminate their elevated genetic risk for lung cancer by quitting smoking- cutting their risk of lung cancer in half and delaying its onset by 7years for those who develop it. These results: 1) underscore the potential value of smoking cessation for all smokers, 2) suggest that CHRNA5 rs16969968 genotype affects lung cancer diagnosis through its effects on smoking, and 3) have potential value for framing preventive interventions for those who smoke
    corecore