97 research outputs found

    Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008)

    Get PDF
    This seminar confirmed that less greenhouse gas (GHG) is emitted per unit area under organic agriculture than under conventional agriculture, and that our eating patterns have a strong impact on factors involved in climate change. Moreover, it shed new light on and contributed original information to a variety of fields. The two major advantages of organic farming in terms of the mitigation of GHG emissions are its ability to store carbon in the ground and the non-use of synthetic nitrogen fertilisers. Means for improving practices and research priorities were identified

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    Genotype-phenotype correlations of TGFBI p.Leu509Pro, p.Leu509Arg, p.Val613Gly, and the allelic association of p.Met502Val-p.Arg555Gln mutations.

    Get PDF
    Investigate the genotype-phenotype correlations for five TGFBI (transforming growth factor, beta-induced) mutations including one novel pathogenic variant and one complex allele affecting the fourth FAS1 domain of keratoepithelin, and their potential effects on the protein's structure. Three unrelated families were clinically diagnosed with lattice corneal dystrophy (CD) and one with an unclassified CD of Bowman's layer. Mutations in the TGFBI gene were detected by direct sequencing, and the functional impact of each variant was predicted using in silico algorithms. Corneal phenotypes, including histological examinations, were compared with the literature data. Furthermore, molecular modeling studies of these mutations were performed. Two distinct missense mutations affecting the same residue at position 509 of keratoepithelin: p.Leu509Pro (c.1526T>C) and p.Leu509Arg (c.1526T>G) were found to be associated with a lattice-type CD. The novel p.Val613Gly (c.1828T>G) TGFBI mutation was found in a sporadic case of an Algerian individual affected by lattice CD. Finally, the Bowman's layer CD was linked to the association in cis of the p.Met502Val and p.Arg555Gln variants, leading to the reclassification of this CD as atypical Thiel-Behnke CD. Structural modeling of these TGFBI mutations argues in favor of these mutations being responsible for instability and/or incorrect folding of keratoepithelin, predictions that are compatible with the clinical diagnoses. Description of a novel TGFBI mutation and a complex TGFBI allele further extends the mutational spectrum of TGFBI. Moreover, we show convincing evidence that TGFBI mutations affecting Leu509 are linked to the lattice phenotype in two unrelated French families, contrasting with findings previously reported. The p.Leu509Pro was reported to be associated with both amyloid and non-amyloid aggregates, whereas p.Leu509Arg has been described as being responsible for Epithelial Basement Membrane Dystrophy (EBMD)

    D25V apolipoprotein C-III variant causes dominant hereditary systemic amyloidosis and confers cardiovascular protective lipoprotein profile

    Get PDF
    Apolipoprotein C-III deficiency provides cardiovascular protection, but apolipoprotein C-III is not known to be associated with human amyloidosis. Here we report a form of amyloidosis characterized by renal insufficiency caused by a new apolipoprotein C-III variant, D25V. Despite their uremic state, the D25V-carriers exhibit low triglyceride (TG) and apolipoprotein C-III levels, and low very-low-density lipoprotein (VLDL)/high high-density lipoprotein (HDL) profile. Amyloid fibrils comprise the D25V-variant only, showing that wild-type apolipoprotein C-III does not contribute to amyloid deposition in vivo. The mutation profoundly impacts helical structure stability of D25V-variant, which is remarkably fibrillogenic under physiological conditions in vitro producing typical amyloid fibrils in its lipid-free form. D25V apolipoprotein C-III is a new human amyloidogenic protein and the first conferring cardioprotection even in the unfavourable context of renal failure, extending the evidence for an important cardiovascular protective role of apolipoprotein C-III deficiency. Thus, fibrate therapy, which reduces hepatic APOC3 transcription, may delay amyloid deposition in affected patients

    An in vivo platform for identifying inhibitors of protein aggregation

    Get PDF
    Protein aggregation underlies an array of human diseases, yet only one small molecule therapeutic has been successfully developed to date. Here, we introduce an in vivo system, based on a β-lactamase tripartite fusion construct, capable of identifying aggregation-prone sequences in the periplasm of Escherichia coli and inhibitors that prevent their aberrant self-assembly. We demonstrate the power of the system using a range of proteins, from small unstructured peptides (islet amyloid polypeptide and amyloid β) to larger, folded immunoglobulin domains. Configured in a 48-well format, the split β-lactamase sensor readily differentiates between aggregation-prone and soluble sequences. Performing the assay in the presence of 109 compounds enabled a rank ordering of inhibition and revealed a new inhibitor of IAPP aggregation. This platform can be applied to both amyloidogenic and other aggregation-prone systems, independent of sequence or size, and can identify small molecules or other factors able to ameliorate or inhibit protein aggregation
    corecore