10 research outputs found

    Hematopoietic stem cell involvement in BCR-ABL1-positive ALL as a potential mechanism of resistance to blinatumomab therapy

    Get PDF
    The bispecific T-cell engager blinatumomab targeting CD19 can induce complete remission in relapsed or refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, some patients ultimately relapse with loss of CD19 antigen on leukemic cells, which has been established as a novel mechanism to escape CD19-specific immunotherapies. Here, we provide evidence that CD19-negative (CD19–) relapse after CD19-directed therapy in BCP-ALL may be a result of the selection of preexisting CD19– malignant progenitor cells. We present 2 BCR-ABL1 fusion–positive BCP-ALL patients with CD19– myeloid lineage relapse after blinatumomab therapy and show BCR-ABL1 positivity in their hematopoietic stem cell (HSC)/progenitor/myeloid compartments at initial diagnosis by fluorescence in situ hybridization after cell sorting. By using the same approach with 25 additional diagnostic samples from patients with BCR-ABL1–positive BCP-ALL, we identified HSC involvement in 40% of the patients. Patients (6 of 8) with major BCR-ABL1 transcript encoding P210BCR-ABL1 mainly showed HSC involvement, whereas in most of the patients (9 of 12) with minor BCR-ABL1 transcript encoding P190BCR-ABL1, only the CD19+ leukemia compartments were BCR-ABL1 positive (P = .02). Our data are of clinical importance, because they indicate that both CD19+ cells and CD19– precursors should be targeted to avoid CD19– relapses in patients with BCR-ABL1–positive ALL

    Human embryonic stem cell-derived neurons as a tool for studying neuroprotection and neurodegeneration.

    Get PDF
    The capacity to generate myriad differentiated cell types, including neurons, from human embryonic stem cell (hESC) lines offers great potential for developing cell-based therapies and also for increasing our understanding of human developmental mechanisms. In addition, the emerging development of this technology as an experimental tool represents a potential opportunity for neuroscientists interested in mechanisms of neuroprotection and neurodegeneration. Potentially unlimited generation of well-defined functional neurons from hES and patient specific induced pluripotent (iPS) cells offers new systems to study disease mechanisms, signalling pathways and receptor pharmacology within a human cellular environment. Such systems may help in overcoming interspecies differences. Far from replacing rodent in vivo and primary culture systems, hES and iPS cell-derived neurons offer a complementary resource to overcome issues of interspecies differences, accelerate drug discovery, study of disease mechanism as well as provide basic insight into human neuronal physiology
    corecore