175 research outputs found
An ORC/Cdc6/MCM2-7 Complex Is Formed in a Multistep Reaction to Serve as a Platform for MCM Double-Hexamer Assembly
In Saccharomyces cerevisiae and higher eukaryotes, the loading of the replicative helicase MCM2-7 onto DNA requires the combined activities of ORC, Cdc6, and Cdt1. These proteins load MCM2-7 in an unknown way into a double hexamer around DNA. Here we show that MCM2-7 recruitment by ORC/Cdc6 is blocked by an autoinhibitory domain in the C terminus of Mcm6. Interestingly, Cdt1 can overcome this inhibitory activity, and consequently the Cdt1-MCM2-7 complex activates ORC/Cdc6 ATP-hydrolysis to promote helicase loading. While Cdc6 ATPase activity is known to facilitate Cdt1 release and MCM2-7 loading, we discovered that Orc1 ATP-hydrolysis is equally important in this process. Moreover, we found that Orc1/Cdc6 ATP-hydrolysis promotes the formation of the ORC/Cdc6/MCM2-7 (OCM) complex, which functions in MCM2-7 double-hexamer assembly. Importantly, CDK-dependent phosphorylation of ORC inhibits OCM establishment to ensure once per cell cycle replication. In summary, this work reveals multiple critical mechanisms that redefine our understanding of DNA licensing
Recommended from our members
MCNP neutron benchmarks
Over 50 neutron benchmark calculations have recently been completed as part of an ongoing program to validate the MCNP Monte Carlo radiation transport code. The new and significant aspects of this work are as follows: These calculations are the first attempt at a validation program for MCNP and the first official benchmarking of version 4 of the code. We believe the chosen set of benchmarks is a comprehensive set that may be useful for benchmarking other radiation transport codes and data libraries. These calculations provide insight into how well neutron transport calculations can be expected to model a wide variety of problems
Sepsis-induced long-term immune paralysis – results of a descriptive, explorative study
Background: Long-lasting impairment of the immune system is believed to be the underlying reason for delayed deaths after surviving sepsis. We tested the hypothesis of persisting changes to the immune system in survivors of sepsis for the first time. Methods: In our prospective, cross-sectional pilot study, eight former patients who survived catecholamine-dependent sepsis and eight control individuals matched for age, sex, diabetes and renal insufficiency were enrolled. Each participant completed a questionnaire concerning morbidities, medications and infection history. Peripheral blood was collected for determination of i) immune cell subsets (CD4+, CD8+ T cells; CD25+ CD127- regulatory T cells; CD14+ monocytes), ii) cell surface receptor expression (PD-1, BTLA, TLR2, TLR4, TLR5, Dectin-1, PD-1 L), iii) HLA-DR expression, and iv) cytokine secretion (IL-6, IL10, TNF-α, IFN-γ) of whole blood stimulated with either α-CD3/28, LPS or zymosan. Results: After surviving sepsis, former patients presented with increased numbers of clinical apparent infections, including those typically associated with an impaired immune system. Standard inflammatory markers indicated a low-level inflammatory situation in former sepsis patients. CD8+ cell surface receptor as well as monocytic HLA-DR density measurements showed no major differences between the groups, while CD4+ T cells tended towards two opposed mechanisms of negative immune cell regulation via PD-1 and BTLA. Moreover, the post-sepsis group showed alterations in monocyte surface expression of distinct pattern recognition receptors; most pronouncedly seen in a decrease of TLR5 expression. Cytokine secretion in response to important activators of both the innate (LPS, zymosan) and the adaptive immune system (α-CD3/28) seemed to be weakened in former septic patients. Conclusions: Cytokine secretion as a reaction to different activators of the immune system seemed to be comprehensively impaired in survivors of sepsis. Among others, this could be based on trends in the downregulation of distinct cell surface receptors. Based on our results, the conduct of larger validation studies seems feasible, aiming to characterize alterations and to find potential therapeutic targets to engage
Microservice Transition and its Granularity Problem: A Systematic Mapping Study
Microservices have gained wide recognition and acceptance in software
industries as an emerging architectural style for autonomic, scalable, and more
reliable computing. The transition to microservices has been highly motivated
by the need for better alignment of technical design decisions with improving
value potentials of architectures. Despite microservices' popularity, research
still lacks disciplined understanding of transition and consensus on the
principles and activities underlying "micro-ing" architectures. In this paper,
we report on a systematic mapping study that consolidates various views,
approaches and activities that commonly assist in the transition to
microservices. The study aims to provide a better understanding of the
transition; it also contributes a working definition of the transition and
technical activities underlying it. We term the transition and technical
activities leading to microservice architectures as microservitization. We then
shed light on a fundamental problem of microservitization: microservice
granularity and reasoning about its adaptation as first-class entities. This
study reviews state-of-the-art and -practice related to reasoning about
microservice granularity; it reviews modelling approaches, aspects considered,
guidelines and processes used to reason about microservice granularity. This
study identifies opportunities for future research and development related to
reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table
Stable Isotope Composition of Fatty Acids in Organisms of Different Trophic Levels in the Yenisei River
We studied four-link food chain, periphytic microalgae and water moss (producers), trichopteran larvae (consumers I), gammarids (omnivorous – consumers II) and Siberian grayling (consumers III) at a littoral site of the Yenisei River on the basis of three years monthly sampling. Analysis of bulk carbon stable isotopes and compound specific isotope analysis of fatty acids (FA) were done. As found, there was a gradual depletion in 13C contents of fatty acids, including essential FA upward the food chain. In all the trophic levels a parabolic dependence of δ13C values of fatty acids on their degree of unsaturation/chain length occurred, with 18:2n-6 and 18:3n-3 in its lowest point. The pattern in the δ13C differences between individual fatty acids was quite similar to that reported in literature for marine pelagic food webs. Hypotheses on isotope fractionation were suggested to explain the findings
Novel curcumin- and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells
BACKGROUND: Inhibition of the COP9 signalosome (CSN) associated kinases CK2 and PKD by curcumin causes stabilization of the tumor suppressor p53. It has been shown that curcumin induces tumor cell death and apoptosis. Curcumin and emodin block the CSN-directed c-Jun signaling pathway, which results in diminished c-Jun steady state levels in HeLa cells. The aim of this work was to search for new CSN kinase inhibitors analogue to curcumin and emodin by means of an in silico screening method. METHODS: Here we present a novel method to identify efficient inhibitors of CSN-associated kinases. Using curcumin and emodin as lead structures an in silico screening with our in-house database containing more than 10(6 )structures was carried out. Thirty-five compounds were identified and further evaluated by the Lipinski's rule-of-five. Two groups of compounds can be clearly discriminated according to their structures: the curcumin-group and the emodin-group. The compounds were evaluated in in vitro kinase assays and in cell culture experiments. RESULTS: The data revealed 3 compounds of the curcumin-group (e.g. piceatannol) and 4 of the emodin-group (e.g. anthrachinone) as potent inhibitors of CSN-associated kinases. Identified agents increased p53 levels and induced apoptosis in tumor cells as determined by annexin V-FITC binding, DNA fragmentation and caspase activity assays. CONCLUSION: Our data demonstrate that the new in silico screening method is highly efficient for identifying potential anti-tumor drugs
Wavefront error of PHI/HRT on Solar Orbiter at various heliocentric distances
We use wavefront sensing to characterise the image quality of the the High
Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager (SO/PHI)
data products during the second remote sensing window of the Solar Orbiter (SO)
nominal mission phase. Our ultimate aims are to reconstruct the HRT data by
deconvolving with the HRT point spread function (PSF) and to correct for the
effects of optical aberrations on the data. We use a pair of focused--defocused
images to compute the wavefront error and derive the PSF of HRT by means of a
phase diversity (PD) analysis. The wavefront error of HRT depends on the
orbital distance of SO to the Sun. At distances \,au, the wavefront error
is small, and stems dominantly from the inherent optical properties of HRT. At
distances \,au, the thermo-optical effect of the Heat Rejection Entrance
Window (HREW) becomes noticeable. We develop an interpolation scheme for the
wavefront error that depends on the thermal variation of the HREW with the
distance of SO to the Sun. We also introduce a new level of image
reconstruction, termed `aberration correction', which is designed to reduce the
noise caused by image deconvolution while removing the aberrations caused by
the HREW. The computed PSF via phase diversity significantly reduces the
degradation caused by the HREW in the near-perihelion HRT data. In addition,
the aberration correction increases the noise by a factor of only
compared to the factor of increase that results from the usual PD
reconstructions
CD24 Is Not Required for Tumor Initiation and Growth in Murine Breast and Prostate Cancer Models
CD24 is a small, heavily glycosylated, GPI-linked membrane protein, whose expression has been associated with the tumorigenesis and progression of several types of cancer. Here, we studied the expression of CD24 in tumors of MMTV-PyMT, Apc1572/T+ and TRAMP genetic mouse models that spontaneously develop mammary or prostate carcinoma, respectively. We found that CD24 is expressed during tumor development in all three models. In MMTV-PyMT and Apc1572T/+ breast tumors, CD24 was strongly but heterogeneously expressed during early tumorigenesis, but decreased in more advanced stages, and accordingly was increased in poorly differentiated lesions compared with well differentiated lesions. In prostate tumors developing in TRAMP mice, CD24 expression was strong within hyperplastic lesions in comparison with non-hyperplastic regions, and heterogeneous CD24 expression was maintained in advanced prostate carcinomas. To investigate whether CD24 plays a functional role in tumorigenesis in these models, we crossed CD24 deficient mice with MMTV-PyMT, Apc1572T/+ and TRAMP mice, and assessed the influence of CD24 deficiency on tumor onset and tumor burden. We found that mice negative or positive for CD24 did not significantly differ in terms of tumor initiation and burden in the genetic tumor models tested, with the exception of Apc1572T/+ mice, in which lack of CD24 reduced the mammary tumor burden slightly but significantly. Together, our data suggest that while CD24 is distinctively expressed during the early development of murine mammary and prostate tumors, it is not essential for the formation of tumors developing in MMTV-PyMT, Apc1572T/+ and TRAMP mice
Plasma sRAGE is independently associated with increased mortality in ARDS: a meta-analysis of individual patient data
The soluble receptor for advanced glycation end-products (sRAGE) is a marker of lung epithelial injury and alveolar fluid clearance (AFC), with promising values for assessing prognosis and lung injury severity in acute respiratory distress syndrome (ARDS). Because AFC is impaired in most patients with ARDS and is associated with higher mortality, we hypothesized that baseline plasma sRAGE would predict mortality, independently of two key mediators of ventilator-induced lung injury.
We conducted a meta-analysis of individual data from 746 patients enrolled in eight prospective randomized and observational studies in which plasma sRAGE was measured in ARDS articles published through March 2016. The primary outcome was 90-day mortality. Using multivariate and mediation analyses, we tested the association between baseline plasma sRAGE and mortality, independently of driving pressure and tidal volume.
Higher baseline plasma sRAGE [odds ratio (OR) for each one-log increment, 1.18; 95% confidence interval (CI) 1.01-1.38; P = 0.04], driving pressure (OR for each one-point increment, 1.04; 95% CI 1.02-1.07; P = 0.002), and tidal volume (OR for each one-log increment, 1.98; 95% CI 1.07-3.64; P = 0.03) were independently associated with higher 90-day mortality in multivariate analysis. Baseline plasma sRAGE mediated a small fraction of the effect of higher Delta P on mortality but not that of higher V (T).
Higher baseline plasma sRAGE was associated with higher 90-day mortality in patients with ARDS, independently of driving pressure and tidal volume, thus reinforcing the likely contribution of alveolar epithelial injury as an important prognostic factor in ARDS. Registration: PROSPERO (ID: CRD42018100241)
- …