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Abstract 

Purpose: The soluble receptor for advanced glycation end‑products (sRAGE) is a marker of lung epithelial injury and 
alveolar fluid clearance (AFC), with promising values for assessing prognosis and lung injury severity in acute respira‑
tory distress syndrome (ARDS). Because AFC is impaired in most patients with ARDS and is associated with higher 
mortality, we hypothesized that baseline plasma sRAGE would predict mortality, independently of two key mediators 
of ventilator‑induced lung injury.

Methods: We conducted a meta‑analysis of individual data from 746 patients enrolled in eight prospective rand‑
omized and observational studies in which plasma sRAGE was measured in ARDS articles published through March 
2016. The primary outcome was 90‑day mortality. Using multivariate and mediation analyses, we tested the associa‑
tion between baseline plasma sRAGE and mortality, independently of driving pressure and tidal volume.

Results: Higher baseline plasma sRAGE [odds ratio (OR) for each one‑log increment, 1.18; 95% confidence interval 
(CI) 1.01–1.38; P = 0.04], driving pressure (OR for each one‑point increment, 1.04; 95% CI 1.02–1.07; P = 0.002), and tidal 
volume (OR for each one‑log increment, 1.98; 95% CI 1.07–3.64; P = 0.03) were independently associated with higher 
90‑day mortality in multivariate analysis. Baseline plasma sRAGE mediated a small fraction of the effect of higher ΔP 
on mortality but not that of higher VT.

Conclusions: Higher baseline plasma sRAGE was associated with higher 90‑day mortality in patients with ARDS, 
independently of driving pressure and tidal volume, thus reinforcing the likely contribution of alveolar epithelial injury 
as an important prognostic factor in ARDS. Registration: PROSPERO (ID: CRD42018100241).
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Introduction

The acute respiratory distress syndrome (ARDS) is a 
clinical syndrome associated with diffuse alveolar injury 
leading to increased permeability pulmonary edema, 
alveolar filling, and rapid onset of hypoxemic respiratory 
failure [1]. Despite improvements in intensive care dur-
ing the last 15 years, ARDS is still an unrecognized, mor-
bid, and life-threatening condition, with mortality rates 
of 30–50% [2]. The identification of predictors of poor 
outcomes and a better understanding of ARDS patho-
physiology are warranted to provide further insight into 
the response to therapeutic strategies and ultimately to 
improve outcomes of patients with ARDS [3].

The integrity of the alveolar-capillary barrier is necessary 
for normal pulmonary function, and impaired alveolar 
fluid clearance (AFC) is a central feature of the pathogen-
esis of ARDS [4, 5]. The magnitude of damage to the alveo-
lar type (AT) 1 cell could therefore be a major determinant 
of the severity of ARDS and of its clinical outcomes [6–8]. 
Growing evidence supports a pivotal role for RAGE, the 
receptor for advanced glycation end-products, in ARDS 
pathophysiology through the initiation and perpetuation 
of inflammatory and immune responses [9]. sRAGE, the 
main soluble form of RAGE, has the most features of a bio-
marker of lung epithelial injury that could be used in clini-
cal medicine [10], with values for ARDS diagnosis [6, 11, 
12], assessment of lung injury severity and impaired AFC 
[6–8, 11, 13, 14], monitoring the response to therapy [15], 
and identifying subgroups (or subphenotypes) of patients 
that might benefit from tailored therapy [11, 14, 16]. Nota-
bly, recent evidence supports a prognostic value for cir-
culating sRAGE in patients with ARDS; elevated baseline 
levels of plasma sRAGE are associated with higher mortal-
ity in patients receiving high-tidal-volume (VT) ventilation 
[7], and lower VT ventilation may accelerate the decline in 
sRAGE levels over the first days of ARDS [11].

In patients with ARDS, the proportion of lung available 
for ventilation is markedly decreased, reflected in part by 
a lower respiratory system compliance (CRS) [17]. Nor-
malizing VT to CRS and using this ratio, termed driving 
pressure (ΔP = VT/CRS), as an index indicating the func-
tional size of the lung provided a better predictor of out-
comes in patients with ARDS than VT alone in a recent 
secondary data analysis [18]. Because higher ΔP may 
contribute to lung epithelial injury in a rat model of sep-
sis-induced ARDS [19], we hypothesized that risk strati-
fication provided by ΔP in ARDS [18] could be mediated, 
at least in part, by the concurrent degree of lung epithe-
lial injury, as assessed by plasma sRAGE [6, 8]. To test the 
extent to which baseline plasma sRAGE could be associ-
ated with higher mortality in ARDS, independent of ΔP 
and VT, we therefore combined individual patient data 

from previously published studies of plasma levels of 
sRAGE during ARDS that included mortality assessment 
and used both a standard risk analysis with multivariate 
adjustments and a multilevel mediation analysis [18, 20].

Some of the results of this study have been previously 
reported in the form of an abstract or oral communica-
tion during the American Thoracic Society International 
Conference (2018).

Methods
Study selection and data collection
Individual participant data were sought from investigators 
of all prospective clinical studies identified through sys-
tematic searches of the published literature using MED-
LINE and Web of Science databases (search terms “acute 
respiratory distress syndrome” and “receptor for advanced 
glycation end-products” up to March 2016) and by exten-
sive discussions with the investigators (referred to herein 
as collaborators). Cohort studies, either interventional or 
observational, were eligible if the following variables were 
available in adult patients with ARDS: baseline plasma 
levels of sRAGE, baseline ΔP, tidal volume, and mortal-
ity at day 90. Data from each study were obtained using 
a standardized spreadsheet (appendix); raw data were 
examined, and inconsistencies or irregularities were clari-
fied with the relevant investigators. This study was exempt 
from institutional review board approval by the Clermont-
Ferrand Sud-Est VI ethics committee because studies that 
were included were already published and had each previ-
ously received local institutional review board approvals 
and consent from participants. This study was conducted 
in accordance with the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses of Individual Par-
ticipants Data (PRISMA-IPD) guidelines [21] (checklist 
available in the appendix). The protocol was registered on 
PROSPERO (ID: CRD42018100241) in June 2018.

When available, data were collected on medical his-
tory and coexisting conditions (including diabetes, 

Take‑home message: 

Because alveolar fluid clearance (AFC) is impaired in most patients 
with acute respiratory distress syndrome (ARDS) and is associated 
with higher mortality, we hypothesized that baseline plasma soluble 
receptor for advanced glycation end‑products (sRAGE), a marker of 
lung epithelial injury and of impaired AFC, would predict mortal‑
ity, independently of two key mediators of ventilator‑induced lung 
injury such as driving pressure and tidal volume.
We conducted a meta‑analysis of individual data from 746 patients 
enrolled in eight prospective randomized and observational stud‑
ies, and found that higher baseline plasma sRAGE was associated 
with higher 90‑day mortality in patients with ARDS, independently 
of driving pressure and tidal volume, thus reinforcing the likely 
contribution of alveolar epithelial injury as an important prognostic 
factor in ARDS.
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hypertension, dyslipidemia, chronic obstructive pul-
monary disease, tobacco smoking, chronic alcohol use, 
chronic dialysis for end-stage renal disease, hematologic 
neoplasms, cancer, atherosclerosis, liver cirrhosis), pri-
mary ARDS risk factor, severity scores at baseline (Acute 
Physiology and Chronic Health Evaluation II [22], Acute 
Physiology and Chronic Health Evaluation III [23], 
Sequential Organ Failure Assessment [24]), the need for 
epinephrine, norepinephrine, or dobutamine support, 
baseline serum creatinine, bilirubin, and sodium and 
bicarbonate levels.

Information on baseline lung injury severity (ratio of 
the partial pressure of arterial oxygen to the fraction of 
inspired oxygen  (PaO2/FiO2), severity of ARDS based on 
the Berlin definition: mild, moderate, or severe), respira-
tory parameters  [VT in ml.kg–1 of predicted body weight 
(PBW), inspiratory plateau pressure (Pplat), positive end-
expiratory pressure (PEEP), and ΔP] and 90-day mortal-
ity was provided by collaborators in the greatest detail 
available. In all of the included studies, baseline levels of 
plasma sRAGE were measured in duplicate using com-
mercially available enzyme-linked immunosorbent assays 
(R&D Systems, Minneapolis, MN, USA) at study entry. 
Apart from plasma sRAGE, all other data from rand-
omized trials were collected after randomization.

Prior to the transformation of the data from each 
study to a standard format for incorporation into a cen-
tral database, the data were checked for consistency by 
a panel of investigators (RB, BP, JMC, and MJ), and any 
queries were referred back to the collaborators prior to 
the final harmonization of the data.

Independent variables and outcomes
The primary outcome (the dependent variable) was mor-
tality at 90 days. The independent variables tested as pre-
dictors included characteristics of patients (e.g., age), 
baseline severity of illness (e.g., risk according to SOFA, 
APACHE II, or III scores,  PaO2/FiO2), ventilation vari-
ables (e.g., VT, PEEP, ΔP), baseline levels of plasma sRAGE 
(defined a priori as the primary predictor), and primary 
ARDS risk factors (e.g., sepsis, pneumonia, severe trauma).

A conceptual diagram of the main objectives of the 
study is provided in the appendix (Supplementary Fig. 5). 
The first step was to test the association between higher 
ΔP and mortality; then, we investigated the associa-
tion between higher degrees of lung epithelial injury (as 
assessed by higher baseline plasma sRAGE) and mor-
tality. Finally, to reinforce the independent association 
between higher baseline plasma sRAGE and higher mor-
tality, mediation analysis was done to assess whether 
higher degrees of lung epithelial injury (as assessed 
by baseline plasma sRAGE) might mediate, at least in 
part, the effects of higher ΔP on mortality. The same 

approaches were used for the effects of another key 
mediator of VILI (higher VT) and for the effects of lower 
 PaO2/FiO2 on mortality, a parameter that is frequently 
used to define ARDS severity [1].

Statistical analysis
Additional details are provided in the appendix. All analy-
ses were performed using Stata software (version 14, Stata-
Corp, College Station, TX) with a two-sided type I error 
of α = 5%. Comparisons of patient characteristics between 
survivors and non-survivors were performed using the chi-
squared or Fisher’s exact tests for categorical variables, and 
Student’s t test or Mann-Whitney test was used when the 
assumption of the t test was not met (normality and homo-
scedasticity studied using the Fisher-Snedecor test) for 
quantitative variables. Because the available severity scores 
(SOFA, APACHE II, APACHE III) differed among the stud-
ies included in this meta-analysis and because incorporat-
ing each of them as a covariate would have led to a reduced 
number of cases available for multivariate analyses, a risk 
score was calculated using an average z score as a compos-
ite of available scores based on the mean of the standard-
ized variables (by subtracting the mean and then dividing by 
their standard error) [25]. Mixed logistic regression models 
were used in univariate analyses and to study the predictive 
factors in multivariate situations by backward and forward 
stepwise regression, according to univariate results and to 
clinical relevance [26, 27]. For analyses of sRAGE levels, 
 PaO2/FiO2, Vt, and PEEP, logarithmic transformation was 
applied to achieve normal distribution. The study effect 
was taken into account as a random effect. The interactions 
between possible predictive factors were also tested. The 
multicollinearity was studied using usual statistical tests.

To investigate whether baseline plasma sRAGE is more 
than a baseline risk predictor and to assess the respective 
contributions of baseline plasma sRAGE, VT, and ΔP for 
prognosis, we conducted a mediation analysis. When medi-
ation analysis is applied, the goal is to determine whether a 
specific variable (the “mediator”) has an effect on outcome 
that explains, in whole or in part, the prognostic effects 
resulting from another independent variable [20, 28]. A 
mediation proportion was estimated, indicating how much 
of the whole prognostic value provided by an independ-
ent variable can be explained by the indirect path in which 
changes in this independent variable drives a change in the 
mediator, and changes in the mediator then affect outcome 
(Supplementary Fig. 5 of the appendix). An average causal 
mediation effect (ACME) was calculated, which express the 
independent hazard associated with this indirect path [20]. 
The exposure-mediator interaction effect was tested.

A total of 4.5% data (out of 65,655 data points) were 
missing. However, no data were missing for the primary 
outcome. We performed multiple imputation of missing 
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data (missing completely at random) for multivariate 
analysis, and this did not modify our results. A sensitivity 
analysis was performed to compare main baseline char-
acteristics and clinical outcomes between patients from 
studies with plasma sRAGE and ΔP available at baseline 
(n = 746) and those with either plasma sRAGE or ΔP 
unavailable at baseline (n = 517).

Results
Data synthesis and patient characteristics
Our database search retrieved 23 articles that were scruti-
nized with a full text review. In total, eight prospective stud-
ies fulfilled our eligibility criteria and were finally included 
[7, 11, 12, 14, 29–32] (Fig. 1). This analysis included 746 par-
ticipants (among whom 700 were complete cases available 
for multivariate analysis) with available individual records, 
plasma levels of sRAGE, and follow-up data: 6 were obser-
vational studies [11, 12, 14, 29–31] and 2 were analyses of 
saved samples and on-study variables from ARDS patients 
enrolled in multicenter randomized controlled trials 
(RCTs) comparing lower and higher VT ventilation [7, 32]. 
The intraclass correlation coefficient associated with the 

study effect was equal to 0.03, thus reflecting a minimal 
study effect in this meta-analysis. Baseline characteristics 
and main outcomes are reported in Table 1. Data on age, 
sex, primary ARDS risk factor, baseline  PaO2/FiO2, ARDS 
severity (mild, moderate, or severe), VT, PEEP, baseline 
plasma sRAGE, and ΔP were available for all 746 patients. 
Comparisons of baseline characteristics and main clinical 
outcomes among patients from studies with plasma sRAGE 
and ΔP available at baseline (n = 746) and those with either 
plasma sRAGE or ΔP unavailable at baseline (n = 517) are 
summarized in Table 1 of the appendix.

Association of baseline plasma of sRAGE and driving 
pressure with 90‑day mortality
Baseline levels of plasma sRAGE in patients from each 
study are summarized in Table  2 of the appendix. Non-
survivors at day 90 had higher baseline plasma levels of 
sRAGE, VT, and ΔP than survivors [4335 (1770–9256) 
vs. 3198 (1554–6009) pg.ml−1, P = 0.002, 8.8 ± 3.0 
vs. 8.2 ± 2.7  ml.kg–1 PBW, P = 0.02, and 20.6 ± 7.0 vs. 
19.2 ± 6.8 cmH2O, P = 0.02, respectively) (Table 1). Unad-
justed analyses tested the relationship between baseline 

Fig. 1 Flow diagram of study selection
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Table 1 Main baseline characteristics and clinical outcomes of survivor and non‑survivor patients with acute respiratory 
distress syndrome (ARDS) at day 90

Characteristics Number of available individuals Total Survivors n = 500 Non‑survivors n = 246 P

Demographics

 Male sex, n (%) 746 441 (59) 296 (59) 145 (59) 0.9

 Age, years 746 53 ± 17 50 ± 16 59 ± 16 <  10−4

 BMI, kg.m−2 700 29.2 ± 22.7 30.4 ± 25 26.9 ± 16.7 0.03

Coexisting conditions, n (%)

 Diabetes 726 104 (14) 64 (13) 40 (17) 0.2

 Hypertension 152 55 (36) 35 (34) 20 (42) 0.3

 Dyslipidemia 166 24 (15) 17 (15) 7 (12) 0.7

 COPD 152 15 (10) 12 (12) 3 (6) 0.4

 Chronic alcohol use 118 30 (25) 23 (29) 7 (18) 0.2

 Tobacco smoking 195 56 (29) 42 (33) 14 (21) 0.1

 Chronic dialysis 726 27 (4) 19 (4) 8 (3) 0.7

 Hematologic neoplasm 607 26 (4) 14 (3) 12 (6) 0.1

 Immunosuppression 527 50 (9) 27 (8) 23 (13) 0.04

 Cancer 646 17 (3) 11 (3) 6 (3) 0.8

 Atherosclerosis 152 35 (23) 27 (26) 8 (17) 0.2

 Liver cirrhosis 544 15 (3) 9 (2) 6 (3) 0.5

Primary ARDS risk factors, n (%) 746

 Pneumonia 264 (35) 175 (35) 89 (36) 0.8

 Aspiration 105 (14) 70 (14) 35 (14) 0.9

 Sepsis 292 (39) 184 (37) 108 (44) 0.07

 Trauma 65 (9) 57 (11) 8 (3) <  10−3

 Transfusion 20 (3) 11 (2) 9 (4) 0.3

 High‑risk surgery 11 (1) 8 (2) 3 (1) 1

 Pancreatitis 5 (1) 4 (1) 1 (0.5) 1

 Others 109 (15) 67 (13) 42 (17) 0.2

ARDS severity (Berlin), n (%) 746

 Mild 80 (11) 67 (13) 13 (5) 0.03

 Moderate 369 (49) 259 (52) 110 (45) 0.01

 Severe 297 (40) 174 (35) 123 (50) 10−3

Baseline severity of illness

 APACHE II 96 27 ± 11 27 ± 11 27 ± 12 1

 APACHE III 574 82 ± 28 77 ± 27 93 ± 26 <  10−3

 SOFA admission 199 10 ± 4 10 ± 4 11 ± 4 0.004

 Risk  scorea 742 − 0.04 ± 0.03 − 0.22 ± 0.04 0.31 ± 0.06 <  10−4

Baseline respiratory variables

 PEEP,  cmH2O 746 9.2 ± 3.9 9.0 ± 3.8 9.5 ± 4.2 0.2

 Tidal volume, ml.kg–1 PBW 746 8.4 ± 2.8 8.2 ± 2.7 8.8 ± 3.0 0.02

 Pplat,  cmH2O 746 28.8 ± 7.2 28.2 ± 7.1 30.1 ± 7.4 <  10−3

 ΔP,  cmH2O 746 19.6 ± 6.9 19.2 ± 6.8 20.6 ± 7.0 0.02

 PaO2/FiO2, mmHg 746 125 ± 55 125 ± 55 113 ± 49 10−4

Baseline biologic variables

 Plasma sRAGE, pg.ml−1 746 3442 [1672–7109] 3198 [1554–6009] 4335 [1770–9256] 0.002

 Serum creatinine, μmol.l−1 688 142 ± 135 136 ± 134 156 ± 136 <  10−3

 Serum bilirubin, μmol.l−1 604 30.3 ± 45.1 28.5 ± 43.8 34.2 ± 47.7 0.2

 Serum bicarbonate, mmol.l−1 629 21.8 ± 5.5 22.1 ± 5.6 21.0 ± 5.1 0.003

 Arterial pH 629 7.39 ± 0.09 7.39 ± 0.08 7.37 ± 0.09 0.005

 Plasma sodium, mmol.l−1 598 139 ± 6 139 ± 5 140 ± 7 0.3
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features and 90-day mortality in our cohort; in these analy-
ses, baseline features such as older age, non-trauma-related 
ARDS, severe ARDS Berlin class, higher APACHE III, 
SOFA and risk scores, lower  PaO2/FiO2, higher VT, inspira-
tory plateau pressure, ΔP, and plasma sRAGE, lower bicar-
bonate and arterial pH, and the need for norepinephrine at 
baseline were all significantly associated with higher 90-day 
mortality (Table 1). Next, variables that were significant in 
univariate analyses (but not already included, directly or 
indirectly, in baseline severity scores) and non-significant 
but clinically relevant variables were used to compute odds 

ratios (OR) for death at day 90 using multivariate logistic 
regression analysis. Higher baseline plasma sRAGE, along 
with VT and ΔP, were independently associated with higher 
90-day mortality (OR for each one-log increment in plasma 
sRAGE, 1.18, 95% CI 1.01–1.38, OR for each one-log 
increment in VT, 1.98, 95% CI 1.07–3.64, and OR for each 
one-point increment in ΔP, 1.04, 95% CI 1.02–1.07, respec-
tively), even after adjustment for severity of illness (risk 
score), age, baseline  PaO2/FiO2, PEEP and sepsis, pneu-
monia or trauma as primary ARDS risk factors, and study 
effect (Fig. 2, Table 3 of the appendix).

Data are presented as mean ± standard deviation (SD) or as medians and interquartile ranges [IQR], unless otherwise indicated. P values were calculated for 
comparisons between patients who survived at day 90 and those who did not. Percentages may not exactly total 100% because of rounding. The body mass index 
(BMI) is the weight in kilograms divided by the square of the height in meters

COPD chronic obstructive pulmonary disease, APACHE II Acute Physiology and Chronic Health Evaluation II Score, APACHE III Acute Physiology and Chronic Health 
Evaluation III Score, SOFASequential Organ Failure Assessment Score, ARDS acute respiratory distress syndrome, ΔP driving pressure, PEEP positive end-expiratory 
pressure, Pplat inspiratory plateau pressure, sRAGE soluble receptor for advanced glycation end-products, PBW predicted body weight, VAP ventilator-associated 
pneumonia, MV mechanical ventilation, ICU intensive care unit
a A risk score was calculated as a composite of available severity scores (SOFA, APACHE II, APACHE III) combined using an average z score

Table 1 continued

Characteristics Number of available individuals Total Survivors n = 500 Non‑survivors n = 246 P

Baseline hemodynamic support

 Need for norepinephrine, n (%) 714 307 (43) 182 (38) 125 (53) <  10−3

 Need for dobutamine, n (%) 103 11 (11) 6 (9) 5 (15) 0.4

Clinical outcomes

 Ventilator‑free days at day 28 740 12 [0–22] 20 [10–24] 0 [0–0] 10−4

 VAP, n (%) 80 25 (31) 19 (37) 6 (21) 0.2

 Duration of invasive MV, days 520 8 [5–16] 8 [5–16] 9 [5–20] 0.5

 Reintubation after extubation, n (%) 358 36 (10) 23 (7) 13 (52) <10−3

 ICU length of stay, days 144 14.3 [8.0–28.0] 17.0 [9.2–28.0] 12.0 [5.0–28.0] 0.008

 Hospital length of stay, days 47 20.9 [10.0–28.4] 21.7 [19.1–29.8] 10.3 [7.6–27.8] 0.1

Fig. 2 Forest plot of odds ratios for death at day 90 after multivariate logistic regression in patients with acute respiratory distress syndrome 
(n = 700). *A risk score was calculated as a composite of available severity scores (SOFA, APACHE II, APACHE III) combined using an average z score. 
Study effect was taken into account as a random effect covariate. Plasma levels of sRAGE (in pg.ml−1),  PaO2/FiO2, tidal volume, and PEEP are natural 
log‑transformed in the model to meet the assumption of linearity with log odds of outcome; the ORs presented here are for each log increase in 
the level of plasma sRAGE,  PaO2/FiO2, tidal volume, and PEEP. APACHE II Acute Physiology and Chronic Health Evaluation II Score, APACHE III Acute 
Physiology and Chronic Health Evaluation III Score, SOFA Sequential Organ Failure Assessment Score, ΔP driving pressure, PEEP positive end‑expira‑
tory pressure, sRAGE soluble receptor for advanced glycation end‑products
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Mediation analysis
After observing that ΔP and baseline plasma sRAGE 
were associated with 90-day mortality, and because there 
was no exposure-mediator interaction (P = 0.12), we per-
formed a multilevel mediation analysis [33] using study 
effect as a fixed effect. Increases in both ΔP and (log-
transformed) plasma sRAGE were significantly associ-
ated with higher mortality in our cohort (step 1, 2 of 
mediation analysis) (Fig.  3), independently of baseline 
characteristics, study effect, and severity (OR, 1.05; 95% 
CI 1.02–1.08 and 1.22; 95% CI 1.04–1.42, respectively). 
Plasma sRAGE was then tested as a mediator of the 
effects of ΔP on mortality. The direct association between 
ΔP and mortality remained significant, and baseline 
plasma sRAGE mediated 9% (ACME) of the effects of ΔP 
on mortality. Next, we performed multilevel mediation 
analysis with Vt and baseline plasma sRAGE and found 
that the effect of higher  VT on mortality was not medi-
ated by plasma sRAGE (Fig.  4). Finally, we performed 
multilevel mediation analysis with  PaO2/FiO2 and base-
line plasma sRAGE and found that the effect of lower 
 PaO2/FiO2 on mortality was not mediated by plasma 
sRAGE (Supplementary Fig. 6 of the appendix).

Discussion
Using a meta-analysis of individual patient data to inves-
tigate the relationships between baseline plasma sRAGE, 
ΔP, VT, and 90-day mortality, our findings indicate that 
higher plasma levels of sRAGE are associated with higher 
mortality in ARDS, independent of ΔP and VT. In addi-
tion, baseline plasma sRAGE mediated a small fraction 
of the effect of higher ΔP on mortality, but not those 
of higher VT or of lower  PaO2/FiO2, thus emphasizing 
the independent prognostic value of plasma sRAGE in 
patients with ARDS.

The results of this analysis are in agreement with previ-
ous recent studies of ΔP in patients with ARDS [2, 18]. 
In a secondary analysis of trials of mechanical ventilation 
involving patients with ARDS, in which VT and PEEP 
were included as independent variables, the dependent 
variable ΔP was most strongly associated with survival 
and best stratified risk during ARDS [18]. In this analy-
sis of 3562 patients with ARDS enrolled in 9 previously 
reported randomized trials, individual changes in VT 
or PEEP after randomization were not independently 
associated with survival, and a 1 SD increment in ΔP 
(approximately 7  cmH2O) was associated with increased 
mortality (relative risk, 1.41; 95% CI 1.31–1.51; P < 10−3), 
even in patients receiving protective plateau pressures 
and VT (relative risk, 1.36; 95% CI 1.17–1.58; P < 10−3) 
[18]. Indeed, changes in VT or PEEP were associated with 
survival only if they were among the changes that led to 
reductions in ΔP (mediation effects of ΔP, P = 0.004 and 

P = 0.001, respectively) [18]. In the current analysis, PEEP 
was neither tested as an independent nor as a mediator 
variable because higher PEEP levels were not associated 
with mortality in multivariate analysis. The findings sup-
porting an association between elevated baseline ΔP and 
higher mortality were recently confirmed by both the 
large multicenter observational LUNG SAFE study [2] 
and secondary analyses of the PROSEVA and ACURA-
SYS studies [34]. On the other hand, the association with 
ΔP and mortality was less obvious in the recent ART trial 
[35]. Interestingly, high intraoperative ΔP and changes in 
the level of PEEP that resulted in an increase in ΔP were 
also associated with more postoperative pulmonary com-
plications in at-risk patients having surgery [36].

There is growing evidence supporting a prognos-
tic value for circulating sRAGE in patients with ARDS. 
Higher baseline plasma sRAGE was associated with mor-
tality in patients receiving high VT ventilation in a retro-
spective analysis of data and samples from a large RCT of 
lower VT in ARDS [7], and lower tidal VT may amplify the 
decline in plasma sRAGE over the first 3 days of ARDS 
in a small single-center observational study [11], suggest-
ing that ventilation with low VT may cause less injury to 
the alveolar epithelium, in particular to AT 1 cells, com-
pared with higher VT ventilation. Recently, lower baseline 
plasma sRAGE was also significantly associated with bet-
ter outcome in ARDS patients ventilated with low VT and 
enrolled in a large multicenter observational study [14]. 
In addition, plasma sRAGE was higher in patients with a 
hyperinflammatory endotype than in those with a hypo-
inflammatory endotype, i.e., ARDS subphenotypes with 
distinct natural histories, clinical and biologic character-
istics, clinical outcomes, and therapeutic responses, e.g., 
to the PEEP level [37] or fluid strategies [38].

In this meta-analysis, we found that baseline plasma 
sRAGE mediated a small fraction (9%) of the effects of 
higher ΔP on mortality, independently of ventilator set-
tings (e.g., VT and PEEP), severity of illness, and patient 
characteristics or coexisting conditions. The factors con-
tributing to the bigger fraction (91%) of the effects of 
higher ΔP on mortality remain undetermined and may 
combine both some ventilator settings that contribute to 
ventilator-induced lung injury and more patient-related 
variables such as the degree of lung injury and of altered 
compliance of the respiratory system. The association of 
high plasma sRAGE and higher ΔP strongly correlates 
with the highest mortality, thus possibly reinforcing the 
contributions of lung epithelial injury and impaired AFC 
[6, 8, 39] as major prognostic factors in ARDS [5, 40, 41].

Although additive and reciprocal effects of both epi-
thelial injury and higher ΔP on mortality may exist, fur-
ther mechanistic studies are needed to better understand 
both the implications of the RAGE pathway on lung 
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injury severity (i.e., altered compliance, impaired AFC, 
and alveolar integrity) [6, 8, 39, 42–46] and the mecha-
notransduction response of lung alveolar epithelium to 
ΔP in ARDS [19, 47, 48].

This study has some limitations. First, it included 
patients from only eight studies, including both observa-
tional studies (n = 6) and RCTs (n = 2), despite rigorous 
and exhaustive literature research. Therefore, our results 
may require validation in larger cohorts of patients, and 
high ΔP values in this study may be, at least partially, 
explained by the use of a large VT in patients enrolled in 
a historical RCT [7]. All selected studies were prospec-
tive, and data from a total of 1107 patients were screened, 
from which 746 patients had full data for major end 
points (plasma sRAGE, ΔP, and 90-day mortality) and 
700 patients were considered complete cases for multi-
variate analysis. In addition, such a meta-analysis neces-
sarily may carry some degree of selection bias (such as 
reflected by a relatively low rate of primary ARDS and 
some imbalances in prognostic variables in the selected 
population) and inter-study heterogeneity (intraclass 
correlation coefficient of 0.03), in part because analy-
sis of possible classifying variables was restricted to the 
data obtained in the original studies. For example, data 
on another prognostic factor such as deadspace fraction 
[49] were unavailable. However, this study provides char-
acterization of the prognostic value of a novel biomarker 
of lung epithelial injury in the largest cohort of ARDS 

patients with available data on both ΔP and plasma 
sRAGE to date. In addition, given the wide time period 
spanning patient inclusion in individual studies, some 
important changes in patient management may influence 
our findings. Second, our analysis does not account for 
baseline chest wall elastance, although the cyclic gradient 
of pressures across the lung (that may generate parenchy-
mal injury during ventilation in ARDS) might be lower 
in patients with increased chest wall elastance, such as in 
obese patients [47]. However, the associations between 
ΔP and mortality in ARDS [2], and between ΔP and 
postoperative pulmonary complications in patients hav-
ing surgery [36], have been recently confirmed without 
considering chest wall elastance as a covariate. Third, our 
conclusions on ΔP are only valid for ventilation in which 
the patient is not making respiratory efforts because it 
is difficult to interpret ΔP in actively breathing patients. 
Fourth, because plasma sRAGE was measured at study 
entry in all studies and ventilatory variables were col-
lected after randomization in randomized trials, changes 
in ΔP due to randomization may have moderately biased 
mediation analysis. Finally, our analysis does not account 
for changes over time in variables such as plasma sRAGE 
or ΔP, and the value of such changes to enrich the prog-
nosis in ARDS remains unknown.

This study also has several strengths. First, analyses 
of individual participant data support the generaliz-
ability of our findings, with the usual caveats regarding 

(See figure on previous page.) 
Fig. 3 Mediation analysis of 90‑day mortality in patients with acute respiratory distress syndrome. Tested mediator: changes in baseline plasma 
sRAGE. Independent variable: changes in baseline ΔP. Top: the first step in our mediational analysis was the demonstration that higher ΔP had a 
measurable impact on mortality after accounting for baseline risk covariates. Middle: second, we checked if mediator changes correlated with higher 
mortality, after accounting for baseline risk covariates. Bottom: finally, a multilinear regression (mixed effects) calculated the influence of higher ΔP on 
the tested mediator (baseline plasma sRAGE). Subsequently, we jointly calculated the influence of the mediator on 90‑day mortality, after account‑
ing for baseline risk covariates, and the direct effects of the independent variable (higher ΔP). This last step shows that higher plasma sRAGE partially 
mediates [9%, P = 0.04 for the average causal mediation effect (ACME)] the original effect of baseline ΔP on mortality and, consequently, baseline ΔP 
remains directly associated with mortality in an independent manner (characterizing incomplete mediation). Mediator and independent variables 
are assessed as continuous variables. Plasma levels of sRAGE (in pg.ml−1),  PaO2/FiO2, tidal volume, and PEEP are natural log‑transformed in the model 
to meet assumption of linearity with log odds of outcome. ARDS acute respiratory distress syndrome, sRAGE soluble receptor for advanced glycation 
end‑products, ΔP driving pressure, PEEP positive end‑expiratory pressure

(See figure on previous page.) 
Fig. 4 Mediation analysis of 90‑day mortality in patients with acute respiratory distress syndrome. Tested mediator: changes in baseline plasma 
sRAGE. Independent variable: changes in tidal volume. Top: the first step in our mediational analysis was the demonstration that higher tidal volume 
had a measurable impact on mortality, after accounting for baseline risk covariates. Middle: second, we checked if mediator changes (higher baseline 
plasma sRAGE) correlated with higher mortality after accounting for baseline risk covariates. Bottom: finally, a multilinear regression (mixed effects) 
calculated the influence of higher tidal volume on the tested mediator (baseline plasma sRAGE). Subsequently, we jointly calculated the influence 
of the mediator on 90‑day mortality, after accounting for baseline risk covariates, and the direct effects of the independent variable (higher tidal 
volume). This last step shows that higher plasma sRAGE does not significantly mediate [P = 0.5 for the average causal mediation effect (ACME)] the 
original effect of higher tidal volume, and, consequently, higher tidal volumes remain directly associated with mortality in an independent manner 
(characterizing lack of mediation). Mediator and independent variables are assessed as continuous variables. Plasma levels of sRAGE (in pg.ml−1), 
 PaO2/FiO2, tidal volume, and PEEP are natural log‑transformed in the model to meet the assumption of linearity with log odds of outcome. PBW 
predicted body weight, ARDS acute respiratory distress syndrome, sRAGE soluble receptor for advanced glycation end‑products, PEEP positive end‑
expiratory pressure
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retrospective analyses of prospectively acquired data. 
Second, this meta-analysis provides novel and unique 
findings that further support a prognostic value for 
plasma sRAGE in ARDS, thus contributing to the char-
acterization of plasma sRAGE as a validated biomarker in 
patients with the syndrome [6–8, 11, 12, 15]. Finally, the 
use of logistic regression multivariate models and media-
tion analyses both support baseline plasma sRAGE as a 
variable that stratified risk, independently of ΔP, VT, and 
the severity of hypoxemia, thus reinforcing the value of 
sRAGE as a reliable prognostic marker in ARDS.

In conclusion, these findings provide evidence that 
alveolar epithelial injury at baseline, as assessed by 
plasma sRAGE, is an independent variable associated 
with 90-day mortality in ARDS, independently of ΔP 
and VT. Although these findings reinforce the likely con-
tribution of alveolar epithelial injury as an important 
prognostic factor in ARDS, the causal—if not recipro-
cal—relationship between lung epithelial injury (i.e., 
higher plasma sRAGE) and higher ΔP deserves further 
investigation.
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