244 research outputs found

    Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw

    Get PDF
    Within low-scale seesaw mechanisms, such as the inverse and linear seesaw, one expects (i) potentially large lepton flavor violation (LFV) and (ii) sizeable non-standard neutrino interactions (NSI). We consider the interplay between the magnitude of non-unitarity effects in the lepton mixing matrix, and the constraints that follow from LFV searches in the laboratory. We find that NSI parameters can be sizeable, up to percent level in some cases, while LFV rates, such as that for \mu -> e \gamma, lie within current limits, including the recent one set by the MEG collaboration. As a result the upcoming long baseline neutrino experiments offer a window of opportunity for complementary LFV and weak universality tests.Comment: 14 pages, 14 composite figures and 1 table. v2: minor changes, references added. Accepted for publication in JHE

    New hos-based parameter estimation methods for speech recognition in noisy environments

    Get PDF
    The problem of recognition in noisy environments is addressed. Often, a recognition system is used in a noisy environment and there is no possibility of training it with noisy samples. Classical speech analysis techniques are based on second-order statistics and their performance dramatically decreases when noise is present in the signal under analysis. New methods based on higher order statistics (HOS) are applied in a recognition system and compared against the autocorrelation method. Cumulant-based methods show better performance than autocorrelation-based methods for low SNRPeer ReviewedPostprint (published version

    Neutrino Oscillations, Fluctuations and Solar Magneto-gravity Waves

    Full text link
    This review has two parts. The first part summarizes the current observational constraints on fluctuations in the solar medium deep within the solar Radiative Zone, and shows how the KamLAND and SNO-salt data combine to make the experimental determination of the neutrino oscillation parameters largely insensitive to prior assumptions about the nature of these oscillations. As part of a search for plausible sources of solar fluctuations to which neutrinos could be sensitive, the second part of the talk summarizes a preliminary analysis of the influence of magnetic fields on helioseismic waves. Using simplifying assumptions which should apply to modes in the solar radiative zone, we find a resonance between Alfven waves and helioseismic g-modes which potentially modifies the solar density profile fairly significantly over comparatively short distance scales, too narrow to be ruled out by present-day analyses of p-wave helioseismic spectra.Comment: Plenary talk presented at AHEP 2003, Valencia, Spain, October 200

    Solar neutrino-electron scattering as background limitation for double beta decay

    Full text link
    The background on double beta decay searches due to elastic electron scattering of solar neutrinos of all double beta emitters with Q-value larger than 2 MeV is calculated, taking into account survival probability and flux uncertainties of solar neutrinos. This work determines the background level to be [1-2]E-7 counts /keV/kg/yr, depending on the precise Q-value of the double beta emitter. It is also shown that the background level increases dramatically if going to lower Q-values. Furthermore, studies are done for various detector systems under consideration for next generation experiments. It was found that experiments based on loaded liquid scintillator have to expect a higher background. Within the given nuclear matrix element uncertainties any approach exploring the normal hierarchy has to face this irreducible background, which is a limitation on the minimal achievable background for purely calorimetric approaches. Large scale liquid scintillator experiments might encounter this problem already while exploring the inverted hierarchy. Potential caveats by using more sophisticated experimental setups are also discussed

    Antiandrogens as Therapies for COVID-19: A Systematic Review.

    Get PDF
    In 2019, the breakthrough of the coronavirus 2 disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represented one of the major issues of our recent history. Different drugs have been tested to rapidly find effective anti-viral treatments and, among these, antiandrogens have been suggested to play a role in mediating SARS-CoV-2 infection. Considering the high heterogeneity of studies on this topic, we decided to review the current literature. We performed a systematic review according to PRISMA guidelines. A search strategy was conducted on PUBMED and Medline. Only original articles published from March 2020 to 31 August 2023 investigating the possible protective role of antiandrogens were included. In vitro or preclinical studies and reports not in the English language were excluded. The main objective was to investigate how antiandrogens may interfere with COVID-19 outcomes. Among 1755 records, we selected 31 studies, the majority of which consisted of retrospective clinical data collections and of randomized clinical trials during the first and second wave of the COVID-19 pandemic. In conclusion, we can state that antiandrogens do not seem to protect individuals from SARS-CoV-2 infection and COVID-19 severity and, thus, their use should not be encouraged in this field

    Neutrino-less Double Beta Decay and Particle Physics

    Full text link
    We review the particle physics aspects of neutrino-less double beta decay. This process can be mediated by light massive Majorana neutrinos (standard interpretation) or by something else (non-standard interpretations). The physics potential of both interpretations is summarized and the consequences of future measurements or improved limits on the half-life of neutrino-less double beta decay are discussed. We try to cover all proposed alternative realizations of the decay, including light sterile neutrinos, supersymmetric or left-right symmetric theories, Majorons, and other exotic possibilities. Ways to distinguish the mechanisms from one another are discussed. Experimental and nuclear physics aspects are also briefly touched, alternative processes to double beta decay are discussed, and an extensive list of references is provided.Comment: 96 pages, 38 figures. Published versio

    Supersymmetric Origin of Neutrino Mass

    Get PDF
    Supersymmetry with breaking of R-parity provides an attractive way to generate neutrino masses and lepton mixing angles in accordance to present neutrino data. We review the main theoretical features of the bilinear R-parity breaking (BRpV) model, and stress that it is the simplest extension of the minimal supersymmetric standard model (MSSM) which includes lepton number violation. We describe how it leads to a successful phenomenological model with hierarchical neutrino masses. In contrast to seesaw models, the BRpV model can be probed at future collider experiments, like the Large Hadron Collider or the Next Linear Collider, since the decay pattern of the lightest supersymmetric particle provides a direct connection with the lepton mixing angles determined by neutrino experiments.Comment: 21 pages, 8 figures, review for NJP focus issue on neutrino

    The transcription factor EB (TFEB) sensitizes the heart to chronic pressure overload

    Get PDF
    The transcription factor EB (TFEB) promotes protein degradation by the autophagy and lysosomal pathway (ALP) and overexpression of TFEB was suggested for the treatment of ALP-related diseases that often affect the heart. However, TFEB-mediated ALP induction may perturb cardiac stress response. We used adeno-associated viral vectors type 9 (AAV9) to overexpress TFEB (AAV9-Tfeb) or Luciferase-control (AAV9-Luc) in cardiomyocytes of 12-week-old male mice. Mice were subjected to transverse aortic constriction (TAC, 27G; AAV9-Luc: n = 9; AAV9-Tfeb: n = 14) or sham (AAV9-Luc: n = 9; AAV9-Tfeb: n = 9) surgery for 28 days. Heart morphology, echocardiography, gene expression, and protein levels were monitored. AAV9-Tfeb had no effect on cardiac structure and function in sham animals. TAC resulted in compensated left ventricular hypertrophy in AAV9-Luc mice. AAV9-Tfeb TAC mice showed a reduced LV ejection fraction and increased left ventricular diameters. Morphological, histological, and real-time PCR analyses showed increased heart weights, exaggerated fibrosis, and higher expression of stress markers and remodeling genes in AAV9-Tfeb TAC compared to AAV9-Luc TAC. RNA-sequencing, real-time PCR and Western Blot revealed a stronger ALP activation in the hearts of AAV9-Tfeb TAC mice. Cardiomyocyte-specific TFEB-overexpression promoted ALP gene expression during TAC, which was associated with heart failure. Treatment of ALP-related diseases by overexpression of TFEB warrants careful consideration

    Models of Neutrino Masses and Mixings

    Full text link
    We review theoretical ideas, problems and implications of neutrino masses and mixing angles. We give a general discussion of schemes with three light neutrinos. Several specific examples are analyzed in some detail, particularly those that can be embedded into grand unified theories.Comment: 44 pages, 2 figures, version accepted for publication on the Focus Issue on 'Neutrino Physics' edited by F.Halzen, M.Lindner and A. Suzuki, to be published in New Journal of Physics

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
    corecore