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Abstract. Supersymmetry with breaking of R-parity provides an attractive way to

generate neutrino masses and lepton mixing angles in accordance to present neutrino

data. We review the main theoretical features of the bilinear R-parity breaking (BRpV)

model, and stress that it is the simplest extension of the minimal supersymmetric

standard model (MSSM) which includes lepton number violation. We describe how

it leads to a successful phenomenological model with hierarchical neutrino masses.

In contrast to seesaw models, the BRpV model can be probed at future collider

experiments, like the Large Hadron Collider or the Next Linear Collider, since the

decay pattern of the lightest supersymmetric particle provides a direct connection

with the lepton mixing angles determined by neutrino experiments.
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1. Introduction

A combination of solar, atmospheric, reactor and accelerator neutrino experiments [1,

2, 3] have now firmly established the existence of neutrino masses and therefore the

incompleteness of the standard model of electroweak interactions. The determination of

neutrino oscillation parameters presented in Ref. [4] uses the most recent data and state-

of-the-art solar and atmospheric neutrino fluxes. For previous reviews and references

see [5, 6, 7, 8]. We have now learned that the atmospheric oscillations involving νµ ↔ ντ

are characterized by a nearly maximal mixing, while the solar neutrino mixing angle is

large, but significantly non-maximal. With the recent standard solar model fluxes there

is a unique range for the solar mass splitting ∆m2
sol

, determined from the data to be

about 30 times smaller than the atmospheric mass splitting ∆m2
atm

.

The discovery of neutrino mass constitutes the only solid hint we currently have

of physics beyond the standard model. There are theoretical arguments based on the

stability of the gauge hierarchy which suggest the existence of physics at the TeV scale.

Supersymmetry [9, 10] provides an answer to both these issues which fits well with

unification and string theory ideas [11].

Prompted by these data there has been a rush of theoretical and phenomenological

papers on models of neutrino masses and mixings. The most popular idea is to ascribe

neutrino masses to physics at a large mass scale in order to implement some variant

of the see-saw mechanism [12, 13, 14, 15]. Broken R-parity supersymmetry provides

a theoretically interesting and phenomenologically viable alternative to the origin of

neutrino mass and mixing [16, 17, 18, 19, 20, 21, 22]. Here we focus on the case of

supersymmetry with bilinear R-parity breaking [23]. This is the simplest of all R parity

violating models. It also provides the simplest extension of the MSSM [23] to include

the violation of lepton number, as well as a calculable framework for neutrino masses

and mixing angles in agreement with the experimental data [24, 25, 26, 27]. In this

model the atmospheric neutrino mass scale is generated at the tree-level, through the

mixing of the three neutrinos with the neutralinos, in an effective ‘low-scale” variant

of the seesaw mechanism [17]. In contrast, the solar mass and mixings are generated

radiatively [26]. BRpV can be considered either as a minimal extension of the MSSM

[28, 29, 30, 31] (with no new particles) valid up to some very high unification energy

scale, or as the effective description of a more fundamental theory in which the breaking

of R-parity occurs in a spontaneous way by minimizing the scalar potential [32, 33, 34].

This short review is mainly devoted to the generation of neutrino masses and lepton

mixing, both the tree-level atmospheric neutrino mass scale as well as a description of

the main features of the full one-loop calculation of the neutrino-neutralino mass matrix

and its various analytic approximations which, in some cases, can be rather simple. For

definiteness we will stick to the case of explicit BRpV only.

However, in contrast to the seesaw mechanism, in broken R-parity supersymmetry

neutrino masses are generated at the electro-weak scale [24, 26, 27]. Such low-scale

schemes for neutrino masses have the advantage of being testable also outside the
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realm of neutrino experiments. Although neutrino properties can not be predicted

from first principles, their fit to the data allows for unambiguous tests of the theory at

accelerator experiments [27, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Indeed, the measured

lepton mixing angles lead to well defined predictions of the decay properties of the

lightest supersymmetric particle (LSP). This is a very general and robust feature of

these theories, which holds irrespective of the nature of the LSP. Here we will illustrate

possible phenomenological scenarios by discussing some examples of measurements of

decay properties of different LSP candidates.

This paper is organized as follows. In Sec. 2 we introduce the main features of the

model, discuss the soft supersymmetry breaking terms, as well as the relevant fermion

mass matrices and the main features of the corresponding diagonalizing matrices. In

Sec. 3 we discuss the generation of the atmospheric neutrino mass scale at the tree–level,

while in Sec. 4 we analyse the main features of the one–loop–induced solar neutrino mass

scale, including a discussion of the relevant Feynman graph topologies. We also give

simplified approximation formula for the solar mixing angle. We then turn briefly to

collider phenomenology and how the model under discussion could be tested in LSP

decays in Sec. 5 before we conclude and summarize our results in Sec. 6.

2. Formalism

In this section we introduce the main features of the model and the relevant mass

matrices. The superpotential of the model and the soft SUSY breaking terms are given,

approximate solutions to the tadpole equations discussed.

2.1. The Superpotential and the Soft Breaking Terms

The minimal BRpV model we are working with is characterized by the presence of three

extra bilinear terms in the superpotential analogous to the µ term present in the MSSM.

Using the conventions of ref. [31] it may be given as

W = εab

[
hij

U Q̂
a
i ÛjĤ

b
u + hij

DQ̂
b
iD̂jĤ

a
d + hij

EL̂
b
iR̂jĤ

a
d − µĤa

d Ĥ
b
u + ǫiL̂

a
i Ĥ

b
u

]
(1)

where the first three terms are the usual MSSM Yukawa terms, µ is the Higgsino mass

term of the MSSM, and ǫi are the three new terms which violate lepton number in

addition to R–Parity. The couplings hU , hD and hE are 3×3 Yukawa matrices and µ and

ǫi are parameters with units of mass. The smallness of the bilinear term ǫi in eq. (1) may

arise from a suitable symmetry. In fact any solution to the µ problem [44] potentially

explains also the “ǫi-problem” [45]. A common origin for the ǫi terms that account

for the neutrino oscillation data, and the µ term responsible for electroweak symmetry

breaking can be ascribed to a horizontal family symmetry of the type suggested in

Ref. [46].

The smallness of ǫi could also arise dynamically in models with spontaneous

breaking of R parity [32, 33, 34], where it is given as the product of a Yukawa coupling

times a singlet sneutrino vacuum expectation value.
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Supersymmetry breaking is parameterized with a set of soft supersymmetry

breaking terms. In the MSSM these are given by

LMSSM
soft = M ij2

Q Q̃a∗
i Q̃

a
j +M ij2

U ŨiŨ
∗
j +M ij2

D D̃iD̃
∗
j +M ij2

L L̃a∗
i L̃

a
j +M ij2

R R̃iR̃
∗
j

+m2
Hd
Ha∗

d Ha
d +m2

Hu
Ha∗

u Ha
u −

[
1
2
Msλsλs + 1

2
Mλλ + 1

2
M ′λ′λ′ + h.c.

]
(2)

+ εab

[
Aij

U Q̃
a
i ŨjH

b
u + Aij

DQ̃
b
iD̃jH

a
d + Aij

EL̃
b
iR̃jH

a
d − BµHa

dH
b
u

]
.

In addition to the MSSM soft SUSY breaking terms in LMSSM
soft the BRpV model contains

the following extra terms

V BRpV
soft = −BiǫiεabL̃

a
iH

b
u , (3)

where the Bi have units of mass. In what follows, we neglect intergenerational mixing

in the soft terms in eq. (2).

The electroweak symmetry is broken when the two Higgs doublets Hd and Hu, and

the neutral component of the slepton doublets L̃1
i acquire non–zero vacuum expectation

values (vevs). These are calculated via the minimization of the effective potential or, in

the diagrammatic method, via the tadpole equations. The full scalar potential at tree

level is

V 0
total =

∑

i

∣∣∣∣
∂W

∂zi

∣∣∣∣
2

+ VD + V MSSM
soft + V BRpV

soft (4)

where zi is any one of the scalar fields in the superpotential in eq. (1), VD are the

D-terms, and V BRpV
soft is given in eq. (3).

The tree level scalar potential contains the following linear terms

V 0
linear = t0dσ

0
d + t0uσ

0
u + t01ν̃

R
1 + t02ν̃

R
2 + t03ν̃

R
3 , (5)

where the different t0 are the tadpoles at tree level. They are given by

t0d =
(
m2

Hd
+ µ2

)
vd + vdD − µ

(
Bvu + viǫi

)

t0u = − Bµvd +
(
m2

Hu
+ µ2

)
vu − vuD + viBiǫi + vuǫ

2

t01 = v1D + ǫ1

(
− µvd + vuB1 + viǫi

)
+ 1

2

(
viM

2
Li1 +M2

L1ivi

)
(6)

t02 = v2D + ǫ2

(
− µvd + vuB2 + viǫi

)
+ 1

2

(
viM

2
Li2 +M2

L2ivi

)

t03 = v3D + ǫ3

(
− µvd + vuB3 + viǫi

)
+ 1

2

(
viM

2
Li3 +M2

L3ivi

)

where we have introduced the notation

Hd =

(
H0

d

H−
d

)
, Hu =

(
H+

u

H0
u

)
, L̃i =

(
L̃0

i

ℓ̃−i

)
, (7)

and shifted the neutral fields with non–zero vevs as

H0
d ≡ 1√

2
[σ0

d+vd+iϕ
0
d] , H0

u ≡ 1√
2
[σ0

u+vu+iϕ
0
u] , L̃0

i ≡
1√
2
[ν̃R

i +vi+iν̃
I
i ] .(8)
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The five vacuum expectation values can be expressed in spherical coordinates as

vd = v sin θ1 sin θ2 sin θ3 cosβ

vu = v sin θ1 sin θ2 sin θ3 sin β

v3 = v sin θ1 sin θ2 cos θ3 (9)

v2 = v sin θ1 cos θ2

v1 = v cos θ1

which preserves the MSSM definition tan β = vu/vd with the W boson mass given as

m2
W = 1

4
g2(v2

d+v
2
u+v2

1+v
2
2+v

2
3). We have also definedD = 1

8
(g2+g′2)(v2

1+v
2
2+v

2
3+v

2
d−v2

u)

and ǫ2 = ǫ21+ǫ
2
2+ǫ

2
3. A repeated index i in eq. (6) implies summation over i = 1, 2, 3. The

five tree level tadpoles t0α are equal to zero at the minimum of the tree level potential,

and from there one can determine the tree level vacuum expectation values.

2.2. Radiative Breaking of the Electroweak Symmetry

A reliable description of electroweak symmetry breaking and Higgs boson physics in

supersymmetry requires the inclusion of radiative corrections. In the BRpV model the

full scalar potential at one–loop level, called effective potential, is

Vtotal = V 0
total + VRC (10)

where V 0
total is given in Eq. (4) and VRC include the quantum corrections. Following

Refs. [24, 26] we use the diagrammatic method, incorporating the radiative corrections

through the one–loop corrected tadpole equations. The one loop tadpoles are

tα = t0α − δtDR
α + Tα(Q) = t0α + T̃DR

α (Q) (11)

where α = d, u, 1, 2, 3 and T̃DR
α (Q) ≡ −δtMS

α + Tα(Q) are the finite one loop tadpoles.

At the minimum of the potential we have tα = 0, and the vevs calculated from these

equations are the renormalized vevs.

Neglecting intergenerational mixing in the soft masses, the five tadpole equations

can be conveniently written in matrix form as
[
t0u, t

0
d, t

0
1, t

0
2, t

0
3

]T
= M2

tad
[vu, vd, v1, v2, v3]

T (12)

where the matrix M2

tad
is given in [26] and depends on the vevs only through the D

term defined above.

In the MSSM limit, where ǫi = vi = 0, the angles θi are equal to π/2. In addition

to the above MSSM parameters, our model contains nine new parameters, ǫi, vi and

Bi. Considering we have three tadpole equations one can take either the 3 Bi as input

and derive the 3 sneutrino vevs or vice versa, such that we have in total just six new

parameters (compared to the MSSM).

In order to have approximate solutions for the tree level vevs, consider the following

rotation among the Hd and lepton superfields:

M′2
tad

= RM2

tad
R−1 (13)
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where the rotation R can be split as

R =




c3 0 0 0 −s3

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

s3 0 0 0 c3



×




c2 0 0 −s2 0

0 1 0 0 0

0 0 1 0 0

s2 0 0 c2 0

0 0 0 0 1



×




c1 0 −s1 0 0

0 1 0 0 0

s1 0 c1 0 0

0 0 0 1 0

0 0 0 0 1



.(14)

where the three angles are defined as

c1 =
µ

µ′ , s1 =
ǫ1
µ′ , µ′ =

√
µ2 + ǫ21 ,

c2 =
µ′

µ′′ , s2 =
ǫ2
µ′′ , µ′′ =

√
µ′2 + ǫ22 , (15)

c3 =
µ′′

µ′′′ , s3 =
ǫ3
µ′′′ , µ′′′ =

√
µ′′2 + ǫ23 .

It is clear that this rotation R leaves the D term invariant. The rotated vevs are given

by

[v′u, v
′
d, v

′
1, v

′
2, v

′
3]

T
= R [vu, vd, v1, v2, v3]

T , (16)

and under the assumption that v′1, v
′
2, v

′
3 ≪ v, these three small vevs have the

approximate solution

v′1 ≈ − µǫ1
M ′2

L1
+D

[
m2

Hd
−M2

L1

µ′µ′′′ v′d +
B1 −B

µ′ v′u

]
,

v′2 ≈ − µ′ǫ2
M ′2

L2
+D

[
m′2

Hd
−M2

L2

µ′′µ′′′ v′d +
B2 −B′

µ′′ v′u

]
, (17)

v′3 ≈ − µ′′ǫ3
M ′2

L3
+D

[
m′′2

Hd
−M2

L3

µ′′′2 v′d +
B3 −B′′

µ′′′ v′u

]
,

where we have defined the following rotated soft terms:

m′2
Hd

=
m2

Hd
µ2 +M2

L1
ǫ21

µ′2 , m′′2
Hd

=
m′2

Hd
µ′2 +M2

L2
ǫ22

µ′′2 , m′′′2
Hd

=
m′′2

Hd
µ′′2 +M2

L3
ǫ23

µ′′′2 ,

B′ =
Bµ2 + B1ǫ

2
1

µ′2 , B′′ =
B′µ′2 +B2ǫ

2
2

µ′′2 , B′′′ =
B′′µ′′2 +B3ǫ

2
3

µ′′′2 , (18)

M ′2
L1

=
m2

Hd
ǫ21 +M2

L1
µ2

µ′2 , M ′2
L2

=
m′2

Hd
ǫ22 +M2

L2
µ′2

µ′′2 , M ′2
L3

=
m′′2

Hd
ǫ23 +M2

L3
µ′′2

µ′′′2 .

As can be seen from eq. (17) the approximation v′1, v
′
2, v

′
3 ≪ v is justified if either

a) ǫi ≪ µ and/or b) (m2
Hd

− M2
Li

)/µ2 ≪ 1 and (Bi − B)/µ ≪ 1. The latter holds

automatically (to some extent) in many models of supersymmetry breaking, as for

example in minimal supergravity Ref. [23].

As in the MSSM, the electroweak symmetry is broken because the large value of the

top quark mass drives the Higgs mass parameter m2
HU

to negative values at the weak
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scale via its RGE [47]. In the rotated basis, the parameter µ′′′2 is determined at one

loop by

µ′′′2 = −1

2

[
m2

Z − ÃZZ(m2
Z)
]

+

(
m′′′2

Hd
+ T̃DR

v′
d

)
−
(
m2

Hu
+ T̃DR

v′u

)
t′2β

t′2β − 1
(19)

where t′β = v′u/v
′
d is defined in the rotated basis and is analogous to tanβ in eq. (9)

defined in the original basis. The finite DR Z-boson self energy is ÃZZ(m2
Z), and the

one–loop tadpoles TDR
v′

d
and TDR

v′u
are obtained by applying to the original tadpoles in

eq. (11) the rotation R defined in eq. (14). The radiative breaking of the electroweak

symmetry is valid in the BRpV model in the usual way: the large value of the top quark

Yukawa coupling drives the parameter m2
HU

to negative values, breaking the symmetry

of the scalar potential.

2.3. Neutral fermion mass matrix

Here we consider the tree level structure of the fermion mass matrices in this model.

For a more complete discussion of different mass matrices in BRpV see the Appendix

of Ref. [26]. In the basis ψ0T = (−iλ′,−iλ3, H̃1
d , H̃

2
u, νe, νµ, ντ ) the neutral fermion mass

matrix MN is given by

MN =




Mχ0 mT

m 0



 (20)

where

Mχ0 =




M1 0 −1
2
g′vd

1
2
g′vu

0 M2
1
2
gvd −1

2
gvu

− 1
2
g′vd

1
2
gvd 0 −µ

1
2
g′vu −1

2
gvu −µ 0


 (21)

is the standard MSSM neutralino mass matrix (M2 and M1 are the SU(2) and U(1)

gaugino soft masses) and

m =




−1
2
g′v1

1
2
gv1 0 ǫ1

− 1
2
g′v2

1
2
gv2 0 ǫ2

− 1
2
g′v3

1
2
gv3 0 ǫ3


 (22)

characterizes the breaking of R-parity. The full 7 × 7 neutrino/neutralino mass matrix

MN is diagonalized as

N ∗MNN−1 = diag(mχ0
i
, mνj

) (23)

where (i = 1, · · · , 4) for the neutralinos, and (j = 1, · · · , 3) for the neutrinos.

N ∗MF 0N−1 = M
diag

F 0 (24)

and the eigenvectors are given by

F 0
i = Nijψj (25)
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using the basis ψ = (−iλ′,−iλ3, H̃1
d , H̃

2
u, νe, νµ, ντ ). As discussed in more detail below,

to a very good approximation, the rotation matrix can be written as

N ∗ ≈
(

N∗ N∗ξ†

−V T
ν ξ V T

ν

)
(26)

Here, N is the rotation matrix that diagonalizes the 4×4 MSSM neutralino mass matrix,

Vν is the rotation matrix that diagonalizes the tree level neutrino 3×3 mass matrix, and

ξij ≪ 1 are the relevant small expansion parameters which characterize the violation of

R–parity and whose form will be given in Sec. 3.

2.4. Charged fermion mass matrix

The chargino/lepton mass matrix is given by

MC =




M2
1√
2
gvu 0 0 0

1√
2
gvd µ − 1√

2
(hE)11 v1 − 1√

2
(hE)22 v2 − 1√

2
(hE)33 v3

1√
2
gv1 −ǫ1 1√

2
(hE)11 vd 0 0

1√
2
gv2 −ǫ2 0 1√

2
(hE)22 vd 0

1√
2
gv3 −ǫ3 0 0 1√

2
(hE)33 vd




(27)

We note that the chargino sector decouples from the lepton sector in the limit ǫi = vi = 0.

As in the MSSM, the chargino mass matrix is diagonalized by two rotation matrices U

and V defined by

U∗ MF+V−1 = M
diag

F+ (28)

with the eigenvectors satisfying

F+
Ri = Vijψ

+
j , F−

Li = Uijψ
−
j (29)

in the basis ψ+ = (−iλ+, H̃1
2 , e

+
R, µ

+
R, τ

+
R ) and ψ− = (−iλ−, H̃2

1 , e
−
L , µ

−
L , τ

−
L ), and with the

Dirac fermions being

F+
i =




F+
Ri

F−
Li


 (30)

To first order in the R-Parity violating parameters we have

V ≈
(

V V ξT
R

−V ℓ
Rξ

∗
R V ℓ

R

)
, U ≈

(
U Uξ†L

−V ℓ∗
L ξL V ℓ∗

L

)
(31)

where V ℓ∗
L and V ℓ

R diagonalize the charged lepton mass matrix according to V ℓ∗
L MℓV ℓ†

R =

Mℓ
diag. For most purposes it is sufficient to take ξR = 02×3, since it is smaller than ξL

typically by a factor of ml/mSUSY . Note, that we can choose V ℓ∗
L = V ℓ†

R = 13×3. We

then have

ξi1
L = aL

1 Λi , ξi2
L = aL

2 Λi + bǫi (32)
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and

aL
1 =

g√
2∆+

, aL
2 = − g2vu

2µ∆+

(33)

where ∆+ is the determinant of the 2 × 2 chargino mass matrix and

Λi = µvi + vdǫi ∝ v′i (34)

are the alignment parameters.

3. Tree–level neutrino mass: the atmospheric scale

The tree-level contribution to neutrino masses from broken R parity supersymmetry has

a long history [48]. Thanks to the Super-K findings [1] we will be interested only in the

case where the neutrino mass which is determined at the tree level is small, in order

to account for the atmospheric neutrino data. The above form for MN is especially

convenient in this case in order to provide an approximate analytical discussion valid in

the limit of small Rp/ violation parameters. Indeed in this case we perform a perturbative

diagonalization of the neutral mass matrix, defining

ξ = m · M−1
χ0 (35)

Since the effective RpV parameters are smaller than the weak scale, we can work in a

perturbative expansion defined by ξ ≪ 1, where ξ denotes a 3 × 4 matrix given as [49]

ξi1 =
g′M2µ

2det(Mχ0)
Λi

ξi2 = − gM1µ

2det(Mχ0)
Λi

ξi3 = − ǫi
µ

+
(g2M1 + g′2M2)vu

4det(Mχ0)
Λi

ξi4 = − (g2M1 + g′2M2)vd

4det(Mχ0)
Λi (36)

From Eq. (36) and Eq. (34) one can see that ξ = 0 in the MSSM limit where ǫi = 0,

vi = 0.

If the elements of this matrix satisfy

∀ξij ≪ 1 (37)

then one can use it as expansion parameter in order to find an approximate solution for

the mixing matrix N .

In leading order in ξ the mixing matrix N is given by,

N ∗=

(
N∗ 0

0 V T
ν

)(
1 − 1

2
ξ†ξ ξ†

−ξ 1 − 1
2
ξξ†

)
(38)

The second matrix above block-diagonalizes the mass matrix MN approximately to the

form diag(Mχ0, meff ), where

meff = −m · M−1
χ0m

T
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=
M1g

2+M2g
′2

4 det(Mχ0)




Λ2
e ΛeΛµ ΛeΛτ

ΛeΛµ Λ2
µ ΛµΛτ

ΛeΛτ ΛµΛτ Λ2
τ


 (39)

The sub-matrices N and Vν diagonalize Mχ0 and meff

N∗Mχ0N † = diag(mχ0
i
), (40)

V T
ν meffVν = diag(0, 0, mν), (41)

where

mν = Tr(meff) =
M1g

2 +M2g
′2

4 det(Mχ0)
|~Λ|2. (42)

The special form of the neutralino/neutrino mass matrix implies that the effective

neutrino mass matrix meff generated after diagonalizing out the heavy neutralinos has a

projective form, a feature common to many spontaneous R–parity violating models [48].

This implies that only one neutrino acquires a tree level mass, the other two remaining

massless [48]. As a result at the tree approximation one can rotate away one of the

three angles in the matrix Vν , leading to

Vν =




1 0 0

0 cos θ23 − sin θ23
0 sin θ23 cos θ23


×




cos θ13 0 − sin θ13
0 1 0

sin θ13 0 cos θ13


 , (43)

where the mixing angles can be expressed in terms of the alignment vector ~Λ as follows:

tan θ13 = − Λe

(Λ2
µ + Λ2

τ )
1

2

, (44)

tan θ23 = −Λµ

Λτ

. (45)

The non-zero tree–level eigenvalue of the neutrino mass matrix is identified with the

atmospheric mass scale. The calculated ∆m2
atm can be expressed as a function of the

0.05 0.08 0.1 0.12

10-4

10-3

10-2

10-1

100

0.05 0.08 0.1 0.12

10-4

10-3

10-2

10-1

100�m2 Atm[eV2
℄

j~�j [GeV2℄ 1 2 3 5

10-4

10-3

10-2

10-1

100

1 2 3 5

10-4

10-3

10-2

10-1

100

�m2 Atm[eV2
℄

105j~�j=(pM2�)
Figure 1. ∆m2

atm versus the BRpV alignment parameters

alignment parameter ~Λ (left in Fig. 1), or as function of |~Λ|/(√M2µ) (right in Fig. 1),
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all of these expressed in GeV. The figure shows that Eq. (42) can be used to fix the

relative size of R-parity breaking parameters to obtain the correct ∆m2
atm. On the other

hand, as shown in Fig 2 the atmospheric angle can be expressed in terms of Λµ/Λτ . Its

maximality is obtained for Λµ ≃ Λτ if Λe is smaller than the other two. Let us stress

10-1 100 101
10-2

10-1

100

10-1 100 101
10-2

10-1

100sin2 (2� Atm)
j��=�� j

Figure 2. The atmospheric angle versus the ratio of BRpV parameters |Λµ/Λτ |

once again that there is no solar mass splitting in the tree approximation so that, as a

result, the “solar angle” is not defined, as it can be rotated away by redefining the two

degenerate neutrinos [14].

4. One–loop–induced neutrino mass: the solar scale

As we just saw in the BRpV model the atmospheric mass scale and mixing arises at

the tree-level. We now discuss the determination of solar neutrino masses and mixings,

which are both generated radiatively. One-loop corrections to the neutrino masses can

be calculated numerically [26] or analytically [24]. While the numerical approach can

give “exact” results (exact in the sense of being correct up to higher order effects), the

analytic approach, while being less accurate, gives a better understanding about which

parameters control the loops and thus the solar neutrino mass and angles in our model.

The discussion will therefore mainly concentrate on the analytical calculations.

In principle, in order to find the correct neutrino mixing angles one has to

diagonalize the one–loop corrected neutralino/neutrino mass matrix. We define

Mpole
ij = MDR

ij (Q) + ∆Mij (46)

where MDR
ij (Q) is the tree-level pole mass and DR indicates the dimensional reduction

scheme we used in the numerical calculation. One-loop corrections are

∆Mij = 1
2

[
Π̃V

ij(m
2
i ) + Π̃V

ij(m
2
j )
]
− 1

2

[
mχ0

i
Σ̃V

ij(m
2
i ) +mχ0

j
Σ̃V

ij(m
2
j)
]
, (47)

where the symmetrization is necessary to achieve gauge invariance and consistency with

the Pauli principle. Here Π̃V and Σ̃V are the renormalized self-energies. They contain

products of couplings and the usual Passarino-Veltman functions [50].
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Diagonalizing the tree-level neutrino mass matrix first and adding then the one-loop

corrections before re-diagonalization one finds that the resulting neutrino/neutralino

mass matrix has non-zero entries in the neutrino/neutrino, the neutrino/neutralino and

in the neutralino/neutralino sectors. We have found [24] that the most important part

of the one-loop neutrino masses derives from the neutrino/neutrino sector and that the

one-loop induced neutrino/neutralino mixing is usually negligible.

The relevant topologies for the one loop calculation of neutrino masses are then

illustrated in Fig.3. Here our conventions are as follows: open circles with a cross�j �i �j �i �j �i
�j �i +  i$ j!

Figure 3. Topologies for neutrino self-energies in the BRpV supersymmetric model

inside indicate genuine mass insertions which flip chirality. On the other hand open

circles without a cross correspond to small R-Parity violating projections, indicating

how much of an Rp-even/odd mass eigenstate is present in a given Rp-odd/even weak

eigenstate. In the actual numerical calculation these projections really belong to the

coupling matrices attached to the vertices. However, given the smallness of Rp-violating

effects, the pre-diagonalization “insertion-method” proves to be a rather useful tool to

develop an analytical perturbative expansion and to acquire a simple understanding of

the results.

These topologies have then to be “filled” with all relevant combinations of

particles/sparticles. Here we will concentrate on discussing the loop involving

bottom/sbottom quarks, since a) it is in large parts of parameter space the numerically

most important one. And b) other loops can be calculated in a very similar way [24],

although they are more complicated.

The relevant Feynman rules for the bottom-sbottom loops are, in the case of left

sbottoms: ~bj bF 0i = i [Obn~bLij (1�
5)2 +Obn~bRij (1+
5)2 ℄
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with

Obnb̃
Lij = −Rb̃

j1hbN ∗
i3 − Rb̃

j2

2g

3
√

2
tan θWN ∗

i1

Obnb̃
Rij = Rb̃

j1

g√
2

(
Ni2 − 1

3
tan θWNi1

)
− Rb̃

j2hbN ∗
i3 (48)

After approximating the rotation matrix N we find that expressions with the

replacement N → N are valid when the neutral fermion is a neutralino. When the

neutral fermion F 0 is a neutrino, the following expressions hold

Obnb̃
Lij ≈ Rb̃

j1hb

(
a3|~Λ|δi′3 + bǫ̃i′

)
+Rb̃

j2

2g

3
√

2
tan θWa1|~Λ|δi′3

Obnb̃
Rij ≈ Rb̃

j1

g√
2

(
1
3
tan θWa1 − a2

)
|~Λ|δi′3 +Rb̃

j2hb

(
a3|~Λ|δi′3 + bǫ̃i′

)
(49)

where i′ = i−4 label one of the neutrinos. Rb̃
jk are the rotation matrices connecting weak

and mass eigenstate basis for the scalar bottom quarks. In case of no intergenerational

mixing in the squark sector Rb̃
jk can be parameterized by just one diagonalizing angle

θb̃.

Putting these couplings together one finds the simplest contribution to the

radiatively induced neutrino mass from loops involving bottom quarks and squarks [26]

Π̃ij(0) = − Nc

16π2

∑

r

(
Obnb̃

RjrO
bnb̃
Lir +Obnb̃

LjrO
bnb̃
Rir

)
mbB0(0, m

2
b , m

2
r) (50)

where B0(0, m
2
b , m

2
r) is a Passarino-Veltman function [50] can be written as follows

Π̃ij = − Ncmb

16π2
2sb̃cb̃h

2
b∆B

b̃1 b̃2
0 × (51)

( ǫ̃iǫ̃j
µ2

+ a3b (ǫ̃iδj3 + ǫ̃jδi3) |~Λ| +
(
a2

3 +
aLaR

h2
b

)
δi3δj3|~Λ|2

)

This expression is proportional to the difference of two B0 functions,

∆B b̃1 b̃2
0 = B0(0, m

2
b , m

2
b̃1

) −B0(0, m
2
b , m

2
b̃2

) (52)

Parameters Λi have been defined above. The ǫ̃ parameters are defined as ǫ̃i =
(
V T

ν

)ij
ǫj ,

and are given by

ǫ̃1 =
ǫe(Λ

2
µ + Λ2

τ ) − Λe(Λµǫµ + Λτǫτ )√
Λ2

µ + Λ2
τ

√
Λ2

e + Λ2
µ + Λ2

τ

ǫ̃2 =
Λτǫµ − Λµǫτ√

Λ2
µ + Λ2

τ

(53)

ǫ̃3 =
~Λ · ~ǫ√

Λ2
e + Λ2

µ + Λ2
τ

On the other hand aL,R are defined as

aR =
g√
2

(
1

3
tWa1 − a2

)
, aL =

g√
2

2

3
tWa1 (54)

The different terms in eq. (51) can be understood as coming from the graphs

corresponding to the first topology of Fig. 3. They have been depicted in more detail in
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�j fH hba3j~�jÆj3 + b~�j b
~bR ~b1s~b 
~b~bLhb fH �ia3j~�jÆi3 + b~�i �j gW;fB g; g0(a2; a1)j~�jÆj3 b

~bL ~b1
~b s~b ~bRg0 fB �ia1j~�jÆi3
Figure 4. Bottom–Sbottom diagrams for solar neutrino mass in the BRpV model

Fig. 4, where we have adopted the following conventions: a) as before, open circles

correspond to small R-parity violating projections, indicating how much of a weak

eigenstate is present in a given mass eigenstate, (b) full circles correspond to R-parity

conserving projections and (c) open circles with a cross inside indicate genuine mass

insertions which flip chirality.

The open and full circles should really appear at the vertices since the particles

propagating in the loop are the mass eigenstates. We have however separated them to

better identify the origin of the various terms. There is another set of graphs analogous

to the previous ones which corresponds to the heavy sbottom. They are obtained from

the previous graphs making the replacement b̃1 → b̃2, sb̃ → cb̃ and cb̃ → −sb̃. Note

that for all contributions to the 2 × 2 sub-matrix corresponding to the light neutrinos

the divergence from B0(0, m
2
b , m

2
b̃1

) is canceled by the divergence from B0(0, m
2
b , m

2
b̃2

),

making finite the contribution from bottom-sbottom loops to this sub-matrix, as it

should be, since the mass is fully “calculable”.

The second most important contribution to the radiatively induced neutrino

mass usually comes from charged-scalar/charged-fermion loops [26]. Since all possible

topologies of Fig. (3) contribute to this loop the structure of the contribution from

charged Higgs/slepton loops is more complex than that of the bottom-sbottom loop

considered above. However, the same topology as for the sbottom/bottom loop also

contributes to the charged scalar loop. It leads to a final expression similar to eq.

(51), with appropriate replacements, which is good enough for an order-of-magnitude

estimate of the charged scalar loop.

4.1. Results for the solar mass scale

We give a discussion of the analytical versus numerical results of the solar mass scale

first. In Fig. (5) we show a comparison of approximate and exact calculation for two

different numerical data sets. In both figures we show the ratio of the approximate-over-

exact solar neutrino mass parameter mAppr
ν2

/mexact
ν2

versus ∆m2
sol

in eV2, where mAppr
ν2

is

the approximate loop calculation involving the bottom-sbottom and the charged scalar

loop, while mexact
ν2

is the exact numerical computation taking into account all loops. The

set to the left called “Ntrl” contains neutralinos being the LSP, while the set to the right

(Stau) has the charged scalar tau as LSP.
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Figure 5. (mAppr
ν2

/mexact
ν2

) versus ∆m2

sol
[eV 2] for the set Ntrl (left) and the set

Stau (right). mAppr
ν2

is the sum of the bottom-sbottom and charged scalar loops, while

mexact
ν2

is the numerical result for all loops. In case of LMA the approximation works

always better than 10 %.

We have found numerically that the terms proportional to ǫ̃i× ǫ̃j in the self energies

in Eq. (51) give the most important contribution to mν2
in the bottom-sbottom loop

calculation in most points of our sets. If these terms are dominant one can find a very

simple approximation for the bottom-sbottom loop contribution to mν2
. It is given by

mν2
≃ 3

16π2
sin(2θb̃)mb∆B

b̃2 b̃1
0

(ǫ̃21 + ǫ̃22)

µ2
. (55)

Eq. (55) works surprisingly well for almost all points in our data sets.

The more complicated structure of the charged scalar loop makes it difficult to give

a simple equation for mν2
similar to Eq. (55) for the bottom-sbottom loop. However,

we note that Eq. (55), with appropriate replacements, allows us to estimate the typical

contributions to the charged scalar loop within a factor of ∼ 3. However, such an

estimate will be biased toward too small or too large mν2
depending mainly on which

SUSY particle is the LSP [24].

4.2. Analytical approximation for the solar mixing angle

In the basis where the tree-level neutrino mass matrix is diagonal the mass matrix at

one–loop level can be written as

m̃ν = V (0)T
ν mνV

(0)
ν =




c1ǫ̃1ǫ̃1 c1ǫ̃1ǫ̃2 c1ǫ̃1ǫ̃3
c1ǫ̃2ǫ̃1 c1ǫ̃2ǫ̃2 c1ǫ̃2ǫ̃3
c1ǫ̃3ǫ̃1 c1ǫ̃3ǫ̃2 c0|~Λ|2 + c1ǫ̃3ǫ̃3


 + · · · (56)

where the ǫ̃i were defined before in Eq. (53). Coefficients c0 and c1 contain couplings

and supersymmetric masses. Since they cancel in the final expression for the angle their

exact definition is not necessary in the following. Dots stand for other terms which
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we will assume to be less important in the following. This matrix can be diagonalized

approximately taking in account that

x ≡ c1|~̃ǫ|2
c0|~Λ|2

≪ 1 (57)

Then

m̃ν = c0|~Λ|2




x
ǫ̃1ǫ̃1

| ~̃ǫ|2
x
ǫ̃1ǫ̃2

| ~̃ǫ|2
x
ǫ̃1ǫ̃3

| ~̃ǫ|2

x
ǫ̃2ǫ̃1

| ~̃ǫ|2
x
ǫ̃2ǫ̃2

| ~̃ǫ|2
x
ǫ̃2ǫ̃3

| ~̃ǫ|2

x
ǫ̃3ǫ̃1

| ~̃ǫ|2
x
ǫ̃3ǫ̃2

| ~̃ǫ|2
1 + x

ǫ̃3ǫ̃3

| ~̃ǫ|2




(58)

The rotation matrix that diagonalizes m̃ν in Eq. (58) can be written as

Ṽ T
ν m̃ν Ṽν = diag(m1, m2, m3) (59)

where

Ṽ T
ν =




e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

e3,1 e3,2 e3,3


 (60)

The lepton mixing matrix is then given by

U =
(
V T

ν Ṽ
T
ν

)T

(61)

The expression for the solar mixing angle can be obtained from:

tan2 θsol =
U2

e2

U2
e1

(62)

From the above equations we obtain the very simple expression for the solar mixing

angle,

tan2 θsol =
ǫ̃21
ǫ̃22

(63)

This formula is a very good approximation if the one–loop matrix has the structure

ǫi × ǫj , as is the case of the bottom-sbottom loop if mν3
≫ mν2

, as illustrated in Fig. 6.

In the left panel we show a calculation comparing for all points the approximate

to the exact solar angle in the set with neutralino LSP, while the right panel shows a

subset of points with the cut sin(2θb̃)∆B
τ̃2τ̃1
0 > 0.02. Note that this cut is designed so

as to favor points in which there is a sizeable bottom-sbottom loop contribution to the

full one-loop neutrino mass. One sees from the right panel that for this case the true

solar angle is well approximated by our analytical formula. Note finally that eq. (63)

will fail completely, if Λµ ≡ Λτ and ǫµ ≡ ǫτ , since then ǫ̃22 = 0, see Eq. (53). This is the

origin of the “sign condition” discussed in [26].
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Figure 6. (tan2 θsol

Appr
/tan2 θsol

exact
) versus tan2 θsol

exact
. On the left panel the

darker region contains over 90% of the points in our sample. In the right panel the

points in the region shown satisfy the cut sin(2θb̃)∆Bτ̃2 τ̃1

0
> 0.02 .

5. Testing neutrino properties at high energy accelerators

Since R-parity is broken in our model, the lightest supersymmetric particle is unstable

and decays. This leads to the exciting possiblity to test the bilinear model at future

colliders, such as the LHC or a possible Linear Collider.

The principle idea of such a collider test [39, 41, 43] is easily understood: Bilinear R-

parity breaking leads to mixing between particles and sparticles with the same quantum

numbers, as discussed above extensively for the case of neutrinos/neutralinos. This

mixing, however, is not arbitrarily different for each particle/sparticle species. In fact,

the bilinear model has just six new parameters, which we choose to be ǫi and Λi,

compared to the MSSM. Essentially five of these six can be fixed from neutrino physics.

Thus, if the MSSM parameters were known, all mixing effects could be calculated

and thus all decay properties of the LSP would be fixed - apart from the effects of the

last unknown parameter. In reality, however, the MSSM soft SUSY breaking parameters

are completely unknown. The approach taken in [39, 41, 43] therefore is to calculate

ratios of branching ratios of different decays. By taking ratios one essentially scales

out the unknown MSSM parameters approximately and obtains observables which are

proportional to either Λi/Λj or ǫi/ǫj (or some weird combination thereof). Which ratio

one measures depends of course on the final state and the LSP under consideration.

Since ratios of Λi’s (or ǫi’s) are correlated with the neutrino angles, as discussed above,

fixing neutrino angles from experimental data therefore gives definite predictions for

some ratios of branching ratios.

One example is shown in Fig. 7, where ratio of branching ratios of neutralino LSP

decays are plotted. Note that Br(µqq′)/Br(τqq′) is directly proportional to tan2(θatm),

i.e. should be near ∼ 1 according to current neutrino data. The spread in the points
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Figure 7. Ratio of branching ratios of neutralino LSP decays. To the left:

Br(µqq′)/Br(τqq′) as a function of tan2(θatm). To the right: Br(eqq′)/Br(τqq′) as

a function of U2

e3. Whether bilinear R-parity breaking SUSY is responsible for

atmospheric neutrino oscillations can be checked by such a measurement. Note that

the spread of the points is entirely due to the unknown MSSM parameters. Even a

moderately accurate input of MSSM parameters will lead to much sharper predictions

for these decays.

is due to the unknown MSSM parameters. Of course, once SUSY is discovered these

unknowns will be measured allowing for much sharper tests of the model than indicated

in Fig. 7.

A second example is shown in Fig. 8, where we show Br(τ̃1 → ∑
νe)/ Br(τ̃1 →∑

νµ) as a function of (ǫ1/ǫ2)
2 (left) and as a function of tan2(θ⊙) (right). Obviously

this ratio is strongly correlated with the solar angle and thus, if scalar taus turn out to

be the LSP, such a measurement would provide an excellent check of the bilinear model

as the origin of the solar neutrino mass scale.

With the LSP unstable, in principle any sparticle can be the LSP. In [43] the

remaining candidates have been discussed: Charginos, scalar quarks, gluinos and scalar

neutrinos. The main conclusion of [43] is that whichever SUSY particle is the LSP,

measurements of branching ratios at future accelerators will provide a definite test of

bilinear R-parity breaking as the model of neutrino mass. We just mention that chargino

LSPs would be more sensitive to atmospheric neutrino physics (as are neutralinos) while

the other LSP candidates mentioned above show more dependence on the solar neutrino

angle.

6. Discussion and conclusions

We have presented a brief review of the idea that supersymmetry with explicit bilinear

breaking of R-parity is the origin of neutrino masses and lepton mixing. The bilinear R-

parity breaking (BRpV) model is the simplest extension of the minimal supersymmetric

standard model (MSSM) which includes lepton number violation. We have seen how
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Figure 8. Ratio of branching ratios of scalar tau LSP decays. To the left:

Br(τ̃1 →∑
νe) /Br(τ̃1 →∑

νµ) as a function of (ǫ1/ǫ2)
2. To the right: as a function

of tan2(θ⊙). Whether bilinear R-parity breaking SUSY is responsible for solar neutrino

oscillations can be checked by such a measurement if scalar taus are the LSP.

it leads to a successful phenomenological model for neutrino oscillations, in accordance

to present neutrino data. The pattern of neutrino masses is hierarchical, with the

atmospheric mass scale arising at the tree level whereas the solar scale is induced from

calculable loop corrections. We saw how, in contrast to seesaw models, the BRpV model

can be probed at future collider experiments, like the LHC or the NLC. Indeed we have

discussed how, irrespective of the supersymmetric particle which is the lightest, its decay

pattern will be directly related with the lepton mixing angles determined in low energy

neutrino experiments.
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