8,072 research outputs found

    May 12 1997 Cme Event: I. a Simplified Model of the Pre-Eruptive Magnetic Structure

    Full text link
    A simple model of the coronal magnetic field prior to the CME eruption on May 12 1997 is developed. First, the magnetic field is constructed by superimposing a large-scale background field and a localized bipolar field to model the active region (AR) in the current-free approximation. Second, this potential configuration is quasi-statically sheared by photospheric vortex motions applied to two flux concentrations of the AR. Third, the resulting force-free field is then evolved by canceling the photospheric magnetic flux with the help of an appropriate tangential electric field applied to the central part of the AR. To understand the structure of the modeled configuration, we use the field line mapping technique by generalizing it to spherical geometry. It is demonstrated that the initial potential configuration contains a hyperbolic flux tube (HFT) which is a union of two intersecting quasi-separatrix layers. This HFT provides a partition of the closed magnetic flux between the AR and the global solar magnetic field. The vortex motions applied to the AR interlock the field lines in the coronal volume to form additionally two new HFTs pinched into thin current layers. Reconnection in these current layers helps to redistribute the magnetic flux and current within the AR in the flux-cancellation phase. In this phase, a magnetic flux rope is formed together with a bald patch separatrix surface wrapping around the rope. Other important implications of the identified structural features of the modeled configuration are also discussed.Comment: 25 pages, 11 figures, to appear in ApJ 200

    Accounting for correlations with core electrons by means of the generalized relativistic effective core potentials: Atoms Hg and Pb and their compounds

    Full text link
    A way to account for correlations between the chemically active (valence) and innermore (core) electrons in the framework of the generalized relativistic effective core potential (GRECP) method is suggested. The "correlated" GRECP's (CGRECP's) are generated for the Hg and Pb atoms. Only correlations for the external twelve and four electrons of them, correspondingly, should be treated explicitly in the subsequent calculations with these CGRECP's whereas the innermore electrons are excluded from the calculations. Results of atomic calculations with the correlated and earlier GRECP versions are compared with the corresponding all-electron Dirac-Coulomb values. Calculations with the above GRECP's and CGRECP's are also carried out for the lowest-lying states of the HgH molecule and its cation and for the ground state of the PbO molecule as compared to earlier calculations and experimental data. The accuracy for the vibrational frequencies is increased up to an order of magnitude and the errors for the bond lengths (rotational constants) are decreased in about two times when the correlated GRECP's are applied instead of earlier GRECP versions employing the same innercore-outercore-valence partitioning.Comment: 12 pages, 4 tables, the text of the paper was significantly improve

    On the VLBI measurement of the Solar System acceleration

    Full text link
    We propose new estimates of the secular aberration drift, mainly due to the rotation of the Solar System about the Galactic center, based on up-to-date VLBI observations and and improved method of outlier elimination. We fit degree-2 vector spherical harmonics to extragalactic radio source proper motion field derived from geodetic VLBI observations spanning 1979-2013. We pay particular attention to the outlier elimination procedure to remove outliers from (i) radio source coordinate time series and (ii) the proper motion sample. We obtain more accurate values of the Solar system acceleration compared to those in our previous paper. The acceleration vector is oriented towards the Galactic center within 7 deg. The component perpendicular to the Galactic plane is statistically insignificant. We show that an insufficient cleaning of the data set can lead to strong variations in the dipole amplitude and orientation, and statistically biased results.Comment: Accepted for publication in A&

    Vector meson-vector meson interaction in a hidden gauge unitary approach

    Get PDF
    The formalism developed recently to study vector meson--vector meson interaction, and applied to the case of ρρ\rho\rho, is extended to study the interaction of the nonet of vector mesons among themselves. The interaction leads to poles of the scattering matrix corresponding to bound states or resonances. We show that 11 states (either bound or resonant) get dynamically generated in nine strangeness-isospin-spin channels. Five of them can be identified with those reported in the PDG, i.e., the f0(1370)f_0(1370), f0(1710)f_0(1710), f2(1270)f_2(1270), f2(1525)f'_2(1525), and K2(1430)K^*_2(1430). The masses of the latter three tensor states have been used to fine-tune the free parameters of the unitary approach, i.e., the subtraction constants in evaluating the vector meson -vector meson loop functions in the dimensional regularization scheme. The branching ratios of these five dynamically generated states are found to be consistent with data. The existence of the other six states should be taken as predictions to be tested by future experiments.Comment: typos corrected; more discussions; one of the appendix rearrange

    Magnon activation by hot electrons via non-quasiparticle states

    Get PDF
    We consider the situation when a femtosecond laser pulse creates a hot electron state in half-metallic ferromagnet (e. g. ferromagnetic semiconductor) on a picosecond timescale but do not act directly on localized spin system. We show that the energy and magnetic moment transfer from hot itinerant electrons to localized spins is facilitated by the so-called non-quasiparticle states, which are the scattering states of a magnon and spin-majority electron. The magnon distribution is described by a quantum kinetic equation that we derive using the Keldysh diagram technique. In a typical ferromagnetic semiconductor such as EuO magnons remain essentially in non-equilibrium on a scale of the order of microsecond after the laser pulse.Comment: 8 pages, 2 figure
    corecore