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The formalism developed recently to study vector mesorteveseson interaction, and applied to the case of
pp, is extended to study the interaction of the nonet of vecsans among themselves. The interaction leads to
poles of the scattering matrix corresponding to bound stteesonances. We show that 11 states (either bound
or resonant) get dynamically generated in nine strangeeespin-spin channels. Five of them can be identified
with those reported in the PDG, i.e., tfig(1370), fo(1710), f2(1270), f5(1525), and K5 (1430). The masses
of the latter three tensor states have been used to finetiarfese parameters of the unitary approach, i.e., the
subtraction constants in evaluating the vector mesoneveseson loop functions in the dimensional regular-
ization scheme. The branching ratios of these five dynaiyigaherated states are found to be consistent with
data. The existence of the other six states should be takereditions to be tested by future experiments.

PACS numbers: 13.75.Lb Mesonmeson interactions,14.4018sr mesons with S=C=0, mass2.5 GeV, 14.40.Ev Other
strange mesons, 12.40.Yx Hadron mass models and calaigatio

I. INTRODUCTION such as the existence of twkd1405) states and twdx; (1270)
states. Both have found some experimental suppart [26, 27].
This approach has also been extended to study systems in-
cluding a heavy quark, charm or bottom, the so-called heavy-

tion, due to the asymptotic freedom, however, its applirati light systems|[28, 29, 30, 31], and to study three-body reso-

at low energies around 1 GeV is highly problematic. Even@nces[32,33].

in the case of Lattice QCD, one still has to face many prob- The interaction of vector mesons with vector mesons or
lems. Therefore, one often turns to various effective tiesor vector mesons with baryons has received little attentiame O
or models. Chiral symmetry, related with the small masses ogxception is the work of Ref._[34] where the vector-vecter in
u, d, s quarks, provides a general principle for constructingteraction is used to provide collision rates of vector meson
effective field theories to study low-energy strong-ingtien  in heavy ion collisions. However, in a recent workl[35], the
phenomena. In this respect, chiral perturbation thepR,  task of finding bound states gf mesons was undertaken,
has been rather successful in studies of low-energy hadronbsing unitary techniques with the interaction verticeswéer
phenomena [1.2) 3] 4] 5, 6]. See, for instance, Ref. [7] for &rom the hidden-gauge Lagrangians|[36, 37]. Using as input
pedagogical introduction and Ref. [8] for recent developtae the vertices provided by these Lagrangians and unitarinieg

in the one-baryon sector. amplitudes via the Bethe-Salpeter equation, two poles were

However, pure perturbation theory cannot describe the lowfound on the complex plane: one i, 5) = (0,0) and the
lying resonances. The breakthrough came with the applicather in(Z, ) = (0, 2) sector, which were identified with the
tion of unitary techniques in the conventional chiral pertu fo(1370) and thef;(1270) states of the PDG [38]. The for-
bation theory, enabling one to study higher energy regiongﬁallsm provides naturally a stronger attraction for thesten
hitherto inaccessible, while employing chiral Lagrangian channel than for the scalar channel. A study of the radiative
The unitary extension of chiral perturbation theoryyRT, decays of these two states based on this approach has been
has been successfully applied to study meson-baryon arRerformedi39].
meson-meson interactions. Several unitarization appesac ~ The main purpose of the present paper is to extend the
have been developed over the years, including the Inverdermalism developed in Ref [35] to study vector meson-
Amplitude Method |[9, 10], dispersion relations (ti¢/D  vector meson interaction in all possible strangenesgisos
method) [11, 12], or in terms of coupled channel Bethe-spin channels.

Salpeter equation [18.14,/15]. This paper is organized as follows: In Sec. I, we write
So far, the unitary chiral approach has been applied t@lown the hidden-gauge Lagrangians and briefly describe the
study the self-interaction of the octet of pseudoscalath®f several mechanisms that contribute to tree-level trammsm-
=~ [9, 110,113, 14, 16], which provides the low lying scalar plitudes, including four-vector-contact interactiens, andu-
mesons, the interaction of the octet of pseudoscalars of thehannel vector exchange, and box diagrams that provide de-
= with the octet of baryons of the proton, which generatescays to two pseudoscalars. We also explain in detail the ap-
JP =1/2~ baryonic resonances [12,/ 15/ 17, 18,119, 20, 21] proximations involved to make calculations feasible arel th
the interaction of the octet of pseudoscalars of thaith arguments supporting these approximations. In Sec. Ill, we
the decuplet of baryons of thA [22, |23], which leads to look for poles on the complex plane and present results chan-
JP = 3/2~ baryon resonances, and the interaction of thenel by channel. We show results both without and with the
octet of pseudoscalars of the with the nonet of vector decay mechanism to two pseudoscalars. We also calculate the
mesons of the, which leads to axial vector meson resonancesesidues of these poles, which quantify the couplings afehe
[24,125]. These studies sometimes report “surprising”ltesu  states to different coupled channels and play a role in studi

Although Quantum Chromodynamics (QCD) has been gen
erally accepted as the underlying theory of the strong aater
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of their radiative decays. Section IV contains a brief summa @) + (b)
and our main conclusions.

+

Il. FORMALISM (C)>—<
— >

+
In this work, as in Refs| [35, 89], we use the Bethe-Salpeter
equation method to unitarize the amplitudes. In this apgrpa \:- --- -:/
the unitarizedl” amplitudes in coupled channels angvave @ . :
can be written as /. .- \
T=V+VGT=(1-VG)'V, (1)

FIG. 1: The mechanisms contributing to the tree-level werdé
whereV stands for the tree-level transition amplitudes, @d vector-vector scattering, which appearsiai the coupled channel
is a diagonal matrix with its element the vector meson—vectoBethe-Salpeter equation.
meson loop function:

' diq 1 1 where
G:z/(zﬂ_)4 2 _ V2. a2 — M2 ) - .
q v14d V2 Viw = 0,V, — 0,V — ig[V,,, V. ],

where My, and My, are the masses of the two vector-

mesons. — L e — i iy, — T
As explained in Ref[35] and also shown in Fi§. 1, four pos- t 2 {u O = it )+l =il = ) } ’
sible mechanisms contribute to the tree-level transition a and() stands for the trace in the SU(3) flavor spab.rep-
plitudesV: (1) four-vector-contact term [Fi@l 1(a)]; (2§u)-  resents the vector nonet:

channel vector meson exchange [Eig. 1(b)];4@hannel vec-
tor meson exchange [Fig. 1(c)]; (4) box diagram with interme wtp°

+ -t
diate pseudoscalars [Figl. 1(d)]. The corresponding diagra va P K

to the one in FiglJ1(d) with crossed pions fop scattering V, = o~ w=p®  p*0 7 (4)
was shown in Ref [35] to provide much smaller contribution V2

than the direct box diagram [Fig. 1(d)] and, hence, we ignore K= K* ¢

it here. Similarly in Ref.[35] the contribution of box dia- u

grams with intermediate vector mesons involving anomalous _
couplings was also found to be small and we shall omit thenwhile u? = U = exp (“/J?‘I’) with @ the octet of the pseu-
in the present work as well. doscalars

In our approach, the first two diagrams play the most im-

portant role in the formation of resonances. Tdehannel o4om ot K+
vector meson exchange is mostly mfvave nature. In the Ve V2
case of the strangeness=1 channek-arave contribution ap- o = = o x KO . (5)
ich i i i V6 V2
pears, which is proportional to the differences between the
initial (final) vector meson masses and is found to be numer- K- KO — /2y
3

ically negligible compared to the sum of the contact mech-
anism and the(u)-channel vector meson exchange mecha-The value of the coupling constant of the Lagrangian
nism. The box diagram depends somewhat on a form factqgq. [@)]is
that we shall discuss later on. The real part of the amplitude
is small compared to the sum of the four-vector-contact am- g= My (6)
plitude and the(u) channel vector-exchange amplitude, but 2f
the imaginary part is relatively large because there isgelar
phase space for the decay into two pseudoscalars, as has b
explicitly shown in Ref. [[35], where cancellations of thalre ; . . .
part with that from the box diagram involving anomalous Cou_ac'tlggﬁsl_.agranglan of EqL13) provides the following two inter-
plings was also found. Thus, we keep only its imaginary part. ' .

We adopt the hidden-gauge formalism, consistent with chi- _ L9 wysv
ral symmetry, to describe the interactions between the vec- Lvvvy = 27 (Vi VAVEVE), )
tor mesons and those between the vectors and the pseu-
doscalars [36, 37]. The hidden-gauge Lagrangian is Lyvvv = ig{(0, Vi — 0, V,)VHVY)

L ) = ig(V"d,V, V¥ — 8,V VIV
L= =7V V") + SMX[V. = (i/9)Tu]?), () = ig((VM,V, — ,V,VIV)).  (8)

é’ViF]h My, the vector meson mass arfid= 93 MeV the pion
oeecay constant.



The first one is responsible for the four-vector-contaarint polarization vectors, are [35]
action and the second one leads to ¢he u-channel vector-

exchange mechanisms. PO = 16(1) €(2)€(3) - €(4),
To calculate the box diz_;\gram, ~one n_eed_s thg vector- :1))
E;e;&io&gi{gr-pseudoscalarmteractlon,Whlch is alsaqed p) — 5[6(1) €(3) €(2) - e(4) — e(1) - €(4) €(2) 5(3)],
, , PE = %[eu) €(3) €(2) - e(4) + €(1) - e(4) €(2) - €(3)]
Evcpq) = —’Lg<V#[(I>,8 (13]> (9) 1
_56(1) - €(2) €(3) - €(4). (12)

With the above vertices, one can then calculate the tree-
level transition amplitudes for each strangeness andiisosp In the following, we explain how to calculate the three-
channel. With the interaction of two spin one particles,kinds of tree-level transition amplitudes, i.e., the four-
the final state could have either spin 0, spin 1, or spinvector-contact amplitude [Fif]l 1(a)], théu)-channel vector-

2. One then has the following strangeness, isospin, andxchange amplitude [Fid. 1(b)], and the box amplitude
spin channels: (0,0,0), (0,0,1), (0,0,2), (0,1,0), (0,1,1 [Fig.[A(d)].

(0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1/2,0), (1,1/2/0),1/2,2),

(1,3/2,0), (1,3/2,1), (1,3/2,2), (2,0,0), (2,0,1), (2)9(2,1,0),

(2,1,1), and (2,1,2). In total, there are 21 channels. Rmbce A. Four-vector-contact term

ing further, we will see that not in all of these channels the

vector meson-vector meson interaction leads to resonances  With the spin projectors and the Lagrangiépy vy, one

An important ingredient in the Bethe-Salpeter equationcan easily obtain th&;;’s for different strangeness, isospin,
method is the on-shell evaluation of the transition amgi®  and spin channels. The results are summarized in TRBles V-
V', which reduces the coupled channel integral equations {&VITin Appendix A. One thing to note is that for each pair of
coupled channel algebraic equations. This can be justiied uidentical particles a factor 011—2 has to be multiplied, i.e., the
ing various methods, such as through a dispersion relation oynitarity normalization, which originates from the facath
T~ after imposing unitarity |[11], 1.2](,9‘9r i2n a m20re trans- .
parent way, writingV (¢?) ~ V(m?) + 5% (¢*> — m?). The 1 _ o
off-shell part of the amplitude then cangels one vector meso 2 ; H@IEIH@I=D] =1, (13)
propagator, leading to a tadpole kind of diagram. This dia-
gram gets canceled with genuine tadpole diagrams from thetherel denotes the identical particle [13]. One has to keep
same chiral Lagrangian, or, can be taken into account by ran mind that the unitarity normalization has to be used te cal
defining the couplings of the original transition amplitutte  culate the(u)-channel vector-exchange diagrams and the box
any case, one can evaluate the transition amplitudes oh sheldiagrams as well.

Since we are only interested in the energy region close to To obtain the amplitudes in isospin space, we use the fol-
the vector meson-vector meson threshold, one can safely igewing phase convention:
nore the three-momenta of the external vector mesonsuelati N .
to their masses and, hence, the zero component of their po- pt=—1+1), KT =—1/2,-1/2). (14)
larization vectors. With the above mentioned on-shelldact
ization, as explained in detail in Ref. |35], one can prow,th
after neglecting corrections of the ordét* /M2, the vector
meson propagators in the loops of the Bethe-Salpeter series

B. Vector exchangein t(u) channel

can be simplified as To calculate the(u)-channel vector meson exchange dia-
grams, one has to project the vertices intwave. This can be
5ii done by the following replacements:
ST (10)
q* — My, +ie s — M2 — M2
ki-ke = 5

with 4, j the spacial indices of the polarization vectors. On the

2 2 2 2
other hand, the propagator for the vector mesons exchangedj, . i, = Kk — - @ — (s + My — M3)(s + My — Mj)

thet andu channels entering the evaluation of the tree-level ) 248 ) , ’

transition amplitudes is given by Fiky = KOKO 4 G — (s + M7 — Mzi(s — M3 + M4)’
S

1 — M2+ M? M2 — M?

_guym. (11) kQ 'k3 = kgkg‘f'ﬁ(j—) (S 1 + Qi(s—’— 3 4)’

— v S
oy — KO _ 5o (s — M? + M3)(s — M3 + M3})
With the approximations mentioned above of neglecting the " ™ 2 — P 4s '

three-momenta of the vector mesons versus their masses, the s — M3 — M}
projection operators into spin 0, 1, and 2, in terms of the fou k3-ka = - 9



where— means the projection ovewave, ands; = (£, p),
ke = (K9, -p), ks = (k9,q), ka = (K3, —q) are the four-
momenta of the particles 1, 2, 3, and 4 with maskgs M,

4

with ¢’ = 16C. To calculate this integral, we first integrate
the ¢° variable by use of the residue theorem and close the
integral below, as shown in Figl 3,

M3, andM4.

The last expression of Ed.](8) is particularly suitable for
the calculation of the vertices. Indeed, the vector figld
must correspond necessarily to the exchanged vector meson,
If it were an external vector meson, themust be spatial as with
we mentioned and theh, leads to a three-momentum of an

external vector, which is neglected in the present approacka =

Given the structure of the last expression in Ed. (8) one can

L1 d?
G= (—27TZ)%/ (271_(;3

i j_om_n i j m, n
€1€2€63 €49°q°q G X

a, 19

1 1

2wiwawswy (—PY — wg — wy)

easily see that all terms corresponding to ttehannel { +
2 — 3 + 4) have the type

(k14 k3) - (k2 + k4) €1 - €3€2 - €4, (15)

while those corresponding to-channel diagramél + 2 —
4 + 3) have the structure

(kl + kq) - (kz + k3) €1 - €4€9 - €3. (16)

It is interesting to note that the above structures of the

1 1
(kY + w1 + wa) (kS + w2 + ws)
1 1
(k2+W3+W4) (kg—i-wl +w4)

1 1
(k?—wl—wg—i—ie) (kg—wg—w3+ie)
1 1
(kg—wl—W4+i€) (kg—W3—W4+i€)

t(u) channel vector-exchange contributions, together with the 1

structures of the projection operators [Eg.](12)], implatth
they contribute equally to spin=0 and spin=2 states.

The resulting tree-level transition amplitudes are summa-

rized in Table§ XVIIEXXVIIlin Appendix A.

C. Boxdiagrams

w.
The box diagrams provide a mechanism for the dynami-
cally generated resonances to decay into two pseudoscalafg =

(Po—wg—w4+i6)
1 1
(k) — kY — w1 — ws +i€) (k9 + kY — w1 — ws + ie)’

where different cuts contributing to the imaginary parthod t
integral can be clearly seen (see also the dotted lines ii#ig

andw; = \/¢® + m?, wa = \/q? + m3, ws = \/q* + m3,

) 3 1.0 s+M2-M2Z2 9 s+M2—M?
4 = Vg*+my, ki = 721/5 2, kg —7235 L
s+MI-M; 0 _ s+MZ-M; 0 _
i k= e and P = Vs, where

25

With the Ly 8¢ Lagrangian of Eg.[{9) and our assumption my, mz, ms, andm, are the masses of intermediate pseu-

that the external particles have small three-momentagtthies

doscalars)My, My, M3, andM, are the masses of the initial

agrams can be easily calculated, as shown in Ref. [35] andnd final vector mesons, ards is the center of mass of en-

explained in the following.

ergy of the vector-vector pail,, is also a function of these

The box diagrams have the following generic structurevariables, whose explicit form is given in Appendix C.

(with the notations shown in Fiy] 2)

4
Vi N<{/é%%q-@q—kn@-@q—k9 (17)

X63-(2q—/€3—P)€4'(2q—k1—P)
y 1 1
(¢ —k1)2 —m? +ie q® —m3 + ie
1 1
X

(q—ks)? —mZ +ie (g — P)?2 —m3 + i€’
whereC' is the coupling of a certain transition. With the ap-

proximation of neglecting the three-momenta of the externa

particles, this can be simplified as

! d4qijmnijmn
W~ C (%)461623646161(1 q

1 1
x(q—k?)Q—m%—i-ieq?—m%—i-ie
1 1
= kD2 — m3 +ic (q — PO —m2 + ic
yegel (18)

Since

1
— d3 4
5 qq"f(q)

X (67,_]677’7,77, + 6im6jn + 6in6jm)a

/dgq 4i9;qmanf(q) = (20)

the four-point integraly becomes
G )—

o [ da G x [ €2 ()
+e(1) - €(3)e(2) - €(4) + €(1) - e(4)e(2) - 6(3)}
1
5

Gq
1 Gn

(_

(3
= (= (21)
As one can see from the above result, there is no contribution
to spin=1 channels from the box diagrams. This should be
the case since two vectors iIn= 0 have positive parity. To
haveJ = 1 with two pseudoscalars one neefls = 1 in
the two pseudoscalars system, which, however, has negative
parity. Itis interesting to note that the box diagrams dbate
2.5 times more to the spin zero states than to the spin 2 states
This is one of the reasons why the scalar resonances develop
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FIG. 2: Kinematics of a generic box diagram, with , m2, ms, and
m4 denoting the masses of intermediate pseudoscalarganich,
ks, andk,4 the four-momenta of the vector particles.

FIG. 3: The contour to evaluate a generic box diagram.

a larger width than the tensor ones. The fact that the tensor
resonances are more bound than the scalar ones reinfoises th

trend.

The explicit forms of the transition amplitudes are given in

Appendix B with the following structure:

E 0 7.0 7.0 1.0
Vi,j = CG4(m17m23m37m47Saklak25k3ak4)a

+ Y EGa(my,ma,mg,ma, s, kY, kS, K, ), (22)

with ¢ and¢é the couplings andr 4 the four-point function de-

fined as

11 G
Gy= —— [ dggf=2n
4 152w2/qud

with G4 given in Eq.[(2D) and~,, given in Appendix C.

(23)

5

As in Ref. [35], we evaluate th&', loop function with a
cutoff of A ~ 1 GeV. To avoid the appearance of double poles,
we replace thé?’s in the denominato,; by

r r
K — KO+ =L K — k) — =2, (24)
4 4
r r
kg_>k3+f, K — k9 — =2, (25)

This was found to be a good approximation in Ref| [35] to the
more accurate method of removing the double poles, which
consists in making a convolution over the mass distribstion
of the external vector mesons to account for their widths.

We also multiply the vertices by the following form factors:

A2 —m?
F 2 — b 1 )
)= T e T e

(26)

_ A} —mj

Af = (k§ — %) + 11>
with ¢° = % ¢ the running variable, and, = 1.4
GeV [35]. These form factors are inspired by the fact that the
largest piece of the imaginary part 6f, comes from the cut
at P’ = wy + wy and inspired by the empirical form factors
used in the decay of vector mesons [40, 41]. The final form of
the four-point function is then

11 [ G
= 15222 . dqqﬁG—dFl(qQ)QFg(qQ)Q.
Using the explicit expressions of ; of Eq. (22) in Ap-
pendix B, we can also calculate the partial decay widths
into two pseudoscalars selecting only the particular cekmn
Technically, this implies keeping only the relevant terms i
eachv; ; of Appendix B. For instance, take the case of the
strangeness=0, isospin=0, and spin=0 channel as one exam-
ple. If we want to have ther decay mode we keep only the
terms that haven., m, in the second and fourth arguments
of eachG (G(u)) function.

F3(q%)

(27)

Ga (28)

I11. RESULTSAND DISCUSSIONS

Since the vector mesons, particularly thand theK™*, are
rather broad, one has to take into account their widths. \We fo
low Ref. [35] and convolute the vector-vect@function with

the mass distributions of the two vector mesons, i.e., by re-
placing theG function appearing in the Bethe-Salpeter equa-

tion [Eq. @)] byG

(M1+2F1)2
- 1 1 1
G(s) = — / dm? <——) Im =
&) = 72 "\om) - M2 4T
(M, —2I1)2
(M2+2F2)2
1 1
X dm3 <——) Im— S
™ m% — M22 + iI'amo
(My—2T5)2

(29)

xG(s, 3%, m3)



with
(M1 +2T1)?
2 9 1 1
N* = dmi | —— ) Im— —
T m2 — M2 + il
(My—2T1)?
(Ma+2T2)?

1 1

X din (——>Im~ .
T m3 — M2 + ilarms

(M2 —2T3)?

wherelM;, M, I'1, andl'y are the masses and widths of the
two vector mesons in the loop. We only take into account the
widths of thep and theK™. In the case of the or ¢, one

or both of the kernels of these integrals will reduce to aadelt
functiond(m? — M?). TheT; function is energy dependent
and has the form of

~ 3
D) = ToBLO (i — my — ma) (30)
with
A(m?,m2,m2) A(MZ,mZ,m2)
off = LT« 3 on = = u 31
qoft 57 q oM, (31)
andm; = mo = m, forthep or
A%, m2,m2) ANM3-..,m%,m2)
of = g M) i M) (3
doft 2 a M- (32)

m1 = m,; andms = my for the K*, wherel is the Kallen
function, A(z,y,2) = (v —y — 2)? — 4yz, and Dy is the
nominal width of thep or the K*.

To regularize the loop functions, one can use either the cut-
off method with a natural cutoff o 1 GeV or the dimen-
sional regularization method with ~ —2 for meson-baryon
scatteringl[12]. This means that by using these parametter va
ues one should get the basic physics, providing a global de-
scription of the resonances generated dynamically in the ap
proach. This is indeed the case here. Yet, in order to take int
account possible correcting terms in the approach, we per-
form a fine-tuning of these parameters, such as to get a few
resonances more precisely. Then, the results for other reso
nances are predictions. In practice, we adopt the following
three-steps approach:

1. First we use the cutoff method with ~ 1 GeV to ob-
tain the amplitudes on the real axis.

2. Once peaks and bumps are observed, and persist with

reasonable adjustments of the value of the cufgff

6

the f4(1525), and theK;(1430) for this purpose. This
leads toa,, = —1.636, ap-g- = —1.726, aprx- =
—1.85. For the rest of the channels involviagor ¢, in

the strangeness=0 channel we use= a,, = —1.65;

in the strangeness=1 channel we use= a,x- =
—1.85; and in the strangeness=2 channel, we yse
ag-g~ = —1.726. These channels play a secondary
role and moderate changes of these parameters barely
affect the results. Hence, in practice, we are fine-tuning
three parameters.

We should mention that our main conclusions would re-
main the same if we had used, for instance, the same
value ofa; = —1.85 for all the channels, and we
find only moderate changes in the masses of the reso-
nances. For instance, with this choiceas@f we would
obtain thef,(1270) at (1206, —i0) MeV on the com-
plex plane without including the box diagrams, com-
pared to(1275, —i1) MeV with the fine-tuned subtrac-
tion constants, and the (0™ ") state at(1770, —i50)

MeV instead of(1780, —i66) MeV (see Table§l| and

M. This means that we get the bulk of the resonances
using a natural substraction constant (cutoff) for the ef-
fective field theory. Once this is done, fine-tuning of
parameters will provide a better description of these res-
onances. Since we get 11 dynamically generated reso-
nances and have fun-tunned three parameters to get the
masses of the three resonances, we are making predic-
tions for eight of them.

As to the total width of the resonances, they are sensi-
tive to the form factors given in Eq$._(26]27). The form
factors used were inspired by the study of Refs.|[40, 41]
and the precise value far, was taken from the study of
Ref. [35]. Later in this section we mention the sensitiv-
ity of the width to changes in th&; value. Once again
we can invoke the same fine-tuning strategy discussed
above and say that a certain value/gfis taken to get
the total width of one of the fitted resonances, such that
the widths of the others are predictions.

We should also note that the couplings of the resonances
to the coupled channels are rather independent of she
parameter, which was already found in Refl[39].

Finally, let us mention that our approach also predicts
branching ratios to different channels. The parameters
of the theory have not been fine-tunned to these observ-
ables and, hence, all the branching ratios obtained are
genuine predictions of our approach, which seem to be
consistent with data as shown in the following sections.

The combination of the cutoff method and the dimensional

we then use the dimensional regularization method witHegularization method has the following advantage: The use

1 = 1000 MeV anda adjusted to reproduce the cutoff Of the cutoff method is physically more transparent: theigal
results. More specifically, we reproduce the real part ofof the cutoff should be around 1 GeV in order for the results

the rho-rho loop function at the two threshold. This
givesa = —1.65.

to make sense. The use of the dimensional regularization
method, on the other hand, enables one to go to the second

Riemann sheet to obtain the pole positions and the residues.
3. Then we fine-tune the&'s for different isospin channels The results shown below are obtained in the dimensional reg-
to fix the masses of some well-known resonances. lnularization scheme. For the masses and widths of the vec-

the present work, we use the masses of fthe 270),

tor mesons, we use the following values![38), = 775.49



MeV,T', = 149.4 MeV, Mk~ = 893.83 MeV, 'k~ = 50.55
MeV, M, = 782.65 MeV, M, = 1019.455 MeV. For the
masses of the pseudoscalars, the following values are used:|, Fig.@, all the|T};|?’s for the strangeness=0 and isospin=0
my = 138.04 MeV, myx = 495.66 MeV, m, = 547.51  channel are shown as a function of the invariant mass of
MeV [3€]. The coupling constant = 4¥ is evaluated with  the vector-vector pair. The upper, middle, and bottom pan-
My = M, andf = 93 MeV. Of course, one could also use els show the results for spin=0, spin=1, and spin=2 channels
an averaged mass fddy and an averaged. In this case, Since the box diagrams only contribute to spin=0 and spin=2
both the numerator and the denominator will become someehannels, there are two plots in each panel for these spim cha
what larger, and the ratio is only slightly changed. Othsewi nels. The left one shows the results without including the bo
in the potentials and in thé€'(s) functions we have used the diagrams, while the right one shows the results includirg th
physical masses of the particles, as mentioned above. Thibpx diagrams. The comparison gives us an idea of the partial
in particular, the large> andp mass difference, introduces a decay widths of the dynamically generated resonances decay
certain source of SU(3) breaking which might not be the onlying into two pseudoscalars. It should be noted that because
one presentin the problem. However, the considerationef thwe only consider the imaginary parts of the box diagrams, the
physical masses is absolutely necessary to guaranteeitynita pole positions on the real axis are almost the same in the two
in coupled channels and to respect the positions of thetthres plots.

A. Strangeness=0 and | sospin=0

olds, and this is the main reason to stick to physical masses i
our approach.

The free parameters are then the subtraction constants used

to regularize the vector-vector loop functions. In fact Wal-

1. Spin=0;0* (0" ™)

ues can be different for each isospin channel, and may even TWO poles are found in this channel: one(&512, —i26)
be different for different spins, but only slight changes ca M€V and another af1726, —i14) MeV, which we associate
be expected [35]. Since the main purpose of this paper ifo the stateg“o(_l370) and fo(1710) for the reasons given be-
to extend the work of Ref[ [35] and to see whether in othed®W- The couplings of these two states to the different cedpl
strangeness-isospin-spin channels resonances can ba-dyngnannels indicate that thig(1370) is mainly app state, while
ically generated, we do not use that freedom to fine-tune af’®/o(1710) is mainly aK™ K~ state. _
the subtraction constants, which only leads to small change From the plots with the contributions of the box dia-

in the masses of the resonances obtained.

grams, the peak positions and the widths are estimated to be

(1523,257) MeV and (1721,133) MeV with the numbers in
In the following, we present our results channel by channethe parenthesis being (mass, width) respectively.

and compare with available data. We plot results|T3? for
differentamplitudes and, in addition, we calculate thespu-
sition and residues of the pole, which are presented in $able
[N In the absence of the box diagrams, one can easily go
to the complex plane. Around the pole position, the ampditud
can be approximated by

)
S — Spole

Tij =

whereg; (g;) are the couplings to channe(y).

The resonance parameters can be obtained from both the
pole positions on the complex plane and the amplitudes
squared on the real axis, as explained in the caption of Ta-
ble[[Vl In Table[TM, we summarize the resonance parame-
ters for the dynamically generated states obtained botlsway
Available datal[38] are also given for comparison. All the
results including the box diagrams shown in this paper are
calculated withA, = 1.4 GeV [see Eqs[(26.,27)], unless oth-
erwise stated. On the other hand, in Tdblk IV, we also provide
the resonance parameters calculated with= 1.5 GeV. The
comparison with those calculated with = 1.4 GeV serves
to quantify the uncertainties inherent in the calculatibthe
box diagrams, which provides a mechanism for the resonances
to decay into two pseudoscalars.

The relevant information from the PDG [38] is summarized
in the following:

e The f,(1370) has a mass of200 ~ 1500 MeV and a

width of 200 ~ 500 MeV. The debate about its mass
continues nowadays; while a recent analysis advocates
amass around 1370 MeV [42], preliminary results from
the Belle Collaboration rather point to a value around
1470 MeV [43]. Among its decay modes, according to
the PDG [38], thetr mode is larger thafi2%, where
thepp mode is dominant. In our approach, the mode

is dominant, as can be seen from Tablé 1V, which is
consistent with the results of Ref. [44] and the recent
analysis of D. V. Bugg [42].

The fo(1710) has a mass ot724 + 7 MeV and a
width of 137 = 8 MeV. The main decay channel is
through KK, nn, and . The decay mode taw

has been seen. This is in agreement with our find-
ings since the two pseudoscalar box diagrams contain
these decay channels. Indeed, we find thatitlié de-

cay channel is dominant. More specifically, our cal-
culated branching ratios are 55% for KK, ~ 27%

for nmy, < 1% for =, and ~ 18% for the vector-
vector component. On the other hand, the PDG gives
the following averagesl'(77)/T(KK) = 0.411513,
andT'(nn)/T(KK) = 0.48 4+ 0.15 [3€]. Our calcu-
lated branching ratio for then channel is in agreement



TABLE I: Pole positions and residues in the strangenessdlsanspin=0 channel. All quantities are in units of MeV.

(1512, —426) [spin=0]

K*K* PP ww wo P
g| (1208, —i419) (7920, —i1071) (—39,i31) (33, —id3) (12,i24)
(1726, —414) [spin=0]
K*'K* Pp ww we P

g| (7124,i96)  (—1030,i1086) (—1763,i108) (3010, —i210) (—2493, —i204)
(1802, —439) [spin=1]

K*'K* Pp ww we P
g (8034, —i2542) 0 0 0 0
(1275, —41) [spin=2]
K*K* PP ww wo oo

g| (4733,—i53) (10889, —i99) (—440,47) (777, —413) (—675,411)
(1525, —i3) [spin=2]

K*K* PP ww we P

g| (10121,4101) (—2443,i649) (—2709,i8) (5016, —i17) (—4615,i17)

TABLE II: The same as Tablé I, but for the strangeness=0 asgpia=1 channel.

(1780, —i66) [spin=0]

K*K* pp pw po
g (7525, —i1529) 0 (—4042,i1391) (4998, —i1872)
(1679, —i118) [spin=1]
K*K* Pp pw pd
g|(1040, —i1989) (6961, —id585) 0 0

(1569, —i16) [spin=2]
K*K* pp pw po
(10208, —i337) 0 (—4598,i451) (6052, —i604)

with their average, while the ratio for ther channel and a width ofl09 + 7 MeV. The width of thef,(1500) is

is much smaller. However, we notice that the abovetoo small to be associated to the lower scalar state that we ge
PDGI'(n7)/T'(KK) ratio is taken from the BES ex- dynamically generated in the unitary approach, with a width
periment.J/vy — ~mTx~ [45], which comes from a of about 260 MeV.

partial wave analysis that includes seven resonances.

On the other hand, there is another BES experiment

J/Y — wKTK~ [4€], which filters] = 0 automat- 2. Spin=1;0"(177)

ically and gives an upper limit(7r7)/T(KK) < 11%

at the95% confidenc_e level. Clearly more analysis is One pole at(1802, —i39) MeV is found. However, this
advised to settle the issue. state cannot be clearly identified with any of the states

« We see that thi,(1370) is mainlypp, and thef,(1710)  listed in the PDG. Note that this state is built only from
is mostly K*K*. Although our picture for the reso- " K*. The fact that this state couples onlyAg K and not

nances would correspond, in terms of quark degreeto two pseudoscalars, as we discussed for the spin=1 states,
of freedom, to a four quarkggq) system, it is any- Makes its observation difficult. However, the prediction is
way interesting to recall that pictures for these reso€ati|T’|? is sizable compared to other resonances and we find
nances in terms ofig also advocate.d components & clear pole on the complex plane associated to this resenanc

for the fo(1370) and strange quark components for the On the other hand, the energy is such that it is slightly above
fo(1710) [38]. the K*K* threshold. This fact, in addition to the width of

the K, would make the observation of this state possible by
The fy(1500), on the hand, has a mass13f05 + 6 MeV  looking at theK K'nw decay channel, and even thér reso-



TABLE Ill: The same as Tabl@é I, but for the strangeness=1 aasin=1/2 channel.

(1643, —724) [spin=0]
pK* K*'w
g| (8102, —i959) (1370, —i146)

K*¢
(—1518,i209)

(1737, —i82) [spin=1]
pK* K*w K*¢
g| (7261, —i3284) (1529, —i1307) (—1388,41721)

(1431, —11) [spin=2]
pK* K*w
g| (10901, —i71) (2267, —i13)

K*¢
(—2898,i17)

TABLE IV: The properties, (mass, width) [in units of MeV], ¢fie 11 dynamically generated states and, if existing, ofehaf their PDG
counterparts. Theoretical masses and widths are obtaingdtivo different ways: “pole position” denotes the numbelpgained from the
pole position on the complex plane, where the mass corresporthe real part of the pole position and the width corredpdo 2 times the
imaginary part of the pole position (the box diagrams cquoesling to decays into two pseudoscalars are not inclutied); axis” denotes the
results obtained from real axis amplitudes squared, winerenaiss corresponds to the energy at which the amplitudeestjbas a maximum
and the width corresponds to the difference between the heogees, where the amplitude squared is half of the maximatwev (In this

case, the box amplitudes corresponding to decays into tendoscalars are included). The two entries under “real axésobtained with

different A, as explained in the main text.

IG(JF9) Theory PDG data

Pole position Real axis Name Mass Width

A, =14GeV A, =1.5GeV

0t (0t (1512,51) (1523,257) (1517,396) fo(1370) 1200~1500 200-500
ot (ot (1726,28) (1721,133) (1717,151) fo(1710) 1724 £ 7 137 £8
0~ (1) (1802,78) (1802,49) ha
ot (2t) (1275,2) (1276,97) (1275,111) f2(1270) 12751412  185.07%9
ot (2t (1525,6) (1525,45) (1525,51) f5(1525) 152545 7318
17(0%H) (1780,133) (1777,148) (1777,172) ao
11t (1679,235) (1703,188) by
17(2%1) (1569,32) (1567,47) (1566,51) a2(1700)??
1/2(07) (1643,47) (1639,139) (1637,162) K}
1/2(1) (1737,165) (1743,126) K1(1650)?
1/2(2%) (1431,1) (1431,56) (1431,63) K3 (1430) 1429 4+ 1.4 104 £ 4

nant shape could be partly reconstructed to give suppdneto t more clearly in the value af for the couplings to the channels

K*K* nature of this resonance.

Two poles are found on the complex plane:
(1275, —i1) MeV and the other af1525, —i3) MeV, which
we associate t@,; (1270) and f(1525). The lower one mainly

3. Spin=2;0"(2"")

as shown in Tablg I. The higher resonance couples mainly to
K*K*, w¢, andgpgp. As mentioned above, the masses of these
two states have been used to fine-tune our subtraction con-

stants.

From |T'|? on the real axis obtained including box di-
one atagrams, one obtains the masses and width$1a%6, 97)

MeV and (1525, 45) MeV. It is gratifying to see that the es-
timated widths are smaller than their experimental counter

couples tgop and very weakly td<™* K*. This can be seen in parts [185.073 MeV for the f,(1270) and73f§ MeV for the
the strengths dff’|? in the lower rightmost panel of Figl 4, and 5(1525)]. This should always be the case since other coupled
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channels, which we have not included, may also contribute. This state does not decay intor but there should be no
However, note that the order of magnitude is consistent angroblem in studying thepp invariant mass since the mass
furthermore we predict a bigger width for thfe(1270) than  of the particle appears above thp threshold. Although

for the £5(1525) in spite of the fact that the higher mass reso-several experiments have looked infgy) — 2(nt7= )7
nance has more phase space to decay. We also see i Thble[Ag, 149,/50,/ 51], none of them has looked at fheinvari-

that these widths get a bit bigger by increasing moderately t ant mass distribution. We can only encourage further search
value of theA, parameter of the form factors of Eqs.[28,27). in this direction once the previous works have proved the via

Once again it is interesting to compare the partial decayility of the experiment.
widths. For thef2(1270) we get most of the width from
decay. In the PDG the branching ratios &&8% for =,

4.6% for KK, and< 1% for nn [3€], to be compared with 3. Spin=2;1-(21)
our calculated numbers 88% for =, ~ 10% for K K and
< 1% for nn.

The case of th¢;(1525) is equally clarifying. We get most
of the width fromK K (~ 66%, compared to the branching
ratio of 88.7% in the PDG |[38]). Our calculated ratios are
~ 21% for nn, ~ 1% for =m, and~ 13% for the vector-vector
component, while the PDG giva$.4% for nn and0.8% for
w7 [38]. The agreement is reasonable.

The position of the higher state at 1525 MeV is also close t
the f5(1430) and thef2(1565). The f2(1430) is a little further
away while thef>(1565) has a strong coupling tpp decay
mode, while in our calculation this state couples very wgakl
to the pp channel; therefore, we do not favor the assignmen
to any of these two resonances.

One pole is found af1569, —i16) MeV, and it couples
strongly to K*K*. Including the box diagrams, one obtains
(1567,47) MeV. The closest in energy included in the PDG
is theay(1700) with a mass ofi732 + 16 MeV and a width
of 194 + 40 MeV, whose decay tap has been seen [38]. It
should be noted that the properties of this particle are rdit w
determined. Different experiments report quite differesit
Qies for both its mass and width [38].

In order to see if the resonance we get could be associated
to thea(1700), we have changed the values of the subtrac-
Eon constants to move its pole position to larger mass walue

or instance, if we change the valuewf. 7. from —1.726
[determined by the}(1525) mass] to—1.0, we would have a
mass of 1704 MeV and a width of 49 MeV. The mass would
be much closer to the PDG average but the width would still
be much smaller. A modification of the values of the subtrac-
, , tion constants of the other two coupled channgls éndp¢)

_In Fig. [@, we plot|T;|'s for the strangeness=0 and |eads to similar conclusions. Given the large uncertainty i
isospin=1 channel. Three resonances are found dynamically,o experimental status of the(1700), we find no particu-
generated. lar reason to associate the state we find dynamically to this
resonance.

We also note that the modification @f;. . has small in-
fluences on the states with the quantum numbebs ahday,
which we studied in the two preceding subsections, and & doe

One pole is found &tL 780, —i66) MeV, and it has the quan- ot allow us to associate these two states with any well-know
tum numbers of. It couples mostly to thé{* K* channel.  resonances listed in the PDG.

No ag around this energy region has been reported, according
to the PDGI[38].

Including the box diagrams, one getsr77, 148) MeV. It
is seen that the inclusion of the box diagrams does not change
much both the mass and the width of this state, meaning that
it has a small branching ratio to two pseudoscalars.

This resonance can in principle be formed Jry —
yK*K* andJ/y — yKK. Itis below theK*K* thresh-
old and wider than thé~ (1" ) state, and it could produce

B. Strangeness=0and Isospin=1

1. Spin=0;1~(0"™")

C. Strangeness=1and | sospin=1/2

In Fig. B, we plot|T;|*'s for the strangeness=1 and
isospin=1/2 channel.

a broader bump close to tHé* K* threshold. Such a feature 1. Spin=0;1/2(0")
does seem to show up in the BES experiment [47], but once
again a new look at these data would be worthwhile. One pole is found af1643, —i24) MeV, and it couples

strongly topK™*. Including the box diagrams, one obtains
(1639,139) MeV.
2. Spin=1;1"(1%7) At first sight, this state might be th€ (1630). On the other
hand, thek (1630) [1/2(?7)], with a mass ofl 629 + 7 MeV
This channel has the quantum number$0fOne pole is and a width of16“_“}'2 MeV [38], might be too narrow to be
found at(1679, —i118) MeV, and it couples strongly tothes  associated with the state dynamically generated from wecto
channel. Experimentally, nlg has been reported around this vector interaction. There is another indication not to asso
energy region. ciate the state we find with th&(1630), since our main de-
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FIG. 5: (Color online) The same as Hig. 4, but for {sel) = (0, 1) channel.

cay mode istK from the two meson box diagrams, while the in the PDG, with the closest one being thg (1650) with a
decay mode observed in the PDGHs 7. mass ofl650 + 50 MeV and a width ofl50 4+ 50 MeV [38].
The width of theK (1650) is 150 MeV, and we also obtain a
width of about 160 MeV. Since the width is twice as large as
2. Spin=1;1/2(1%) the difference of masses the association of these two states
tempting. There is another feature that could support this a
One pole is found at1737, —i82) MeV, and it couples sociation; in spite of the limited information on this resoice,

strongly top*. No & around this energy region is reported the only decay channels observed afer, K ¢, but none on
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FIG. 6: (Color online) The same as Hig. 4, but for thel) = (1,1/2) channel.
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FIG. 7: The same as Figl 4, but for the I) = (0, 2) channel. Note that we have not shown the results for spinatiredl, since there are no
interactions here because of the properties of identia#icpes.
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FIG. 8: The same as Figl 4, but for the ) = (1, 3/2) channel.
two pseudoscalars for which there is more phase space. This 3. Spin=2;1/2(2")
is in agreement with the fact that our state of spin 1 does not
decay into two pseudoscalars, as we have mentioned. One pole is found at1431, —i1) MeV, which might cor-

respond to thek’;(1430), and its position has been used to
fine-tune the subtraction constants in this channel. Inctud
the box diagrams, one obtaifist31, 56) MeV.

According to the PDG, th&’; (1430) has a mass df429 +
1.4 MeV and a width of104 + 4 MeV. Among its decays
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Strangeness=2, Isospin=0, Spin=1
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FIG. 9: The same as Figl 4, but for the I) = (2,0) channel. There are no interactions in spin=0 and spin=2reliamue to the properties
of identical particles.
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FIG. 10: The same as Figl. 4, but for the I) = (2, 1) channel. There are no interactions in spin=1 channel dueetprioperties of identical
particles.
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modes, theK*7m mode amounts t¢13.4 + 2.2)%, some of  production processes [57]. Once again, the bump could not

which might bep K*; the K'm mode amounts t649.9+1.2)%. be associated to a pole in our approach and, hence, would not

Therefore, the width that we obtain is in reasonable agreéme qualify as a resonance.

with the data. We do not find any candidate in the PDG to our broad
bumps in the strange sector. However, the findings of the
present work should be kept in mind in the verge of possi-

D. Other channes ble claims for exotic strange mesons from bumps observed in

cross sections.

It is interesting to note that out of the 21 combinations of e would like to give some perspective to the results ob-
strangeness, isospin and spin, we have found resonanges olgined here. We have used as building blocks for our states
in nine of them. In all the “exotic” channels, from the poifito ONly vector mesons. Two pseudoscalar states have been con-
view that they cannot be formed frogg states, we did not sidered for the dgcay but not m_corporated as coupled chan-
find dynamically generated resonances, including the threBe!S. Other possible channels, like in the case ofyp scat-
strangeness=0, isospin=2 channels, the three strangﬂmesster'”g’ are also letted in our approach. The contributains
isospin=3/2 channels, the six strangeness=2 channelsgixit theSe channels in a coupled channel approach would be ad-
ther isospin=0 or isospin=1). visable should one try to get, for instaneer scattering in a

Itis also interesting to note that although no poles aredoun °road range of energies. Such an approach has been under-

on the complex plane, there do exist some structures on tH@ken in Ref. [44]. However, this is not our purpose here. We

real axis. For instance, in the (strangeness=0, isospin=é?ke only vector mesons as building blocks with their respec

channel, one finds a dip aroug& = 1300 MeV in the spin=0 tive intt_eractions, and we look at the states that are gesetrat
channel, and a broad bump in the spin=2 channel aroundynamically from these interactions. We th_en get a few me-
/5 = 1400 MeV, as can be clearly seen from Fig. 7. In the SON resonances, but not all. This tells us Wh‘I‘Ch resonamees a
(strangeness=1, isospin=3/2) and (strangeness=2, iisagpi mps_t likely to be essentially vector-vector “moleculesjda
channels, one observes similar structures occurring fieghi  tNiS is the purpose of the present work.
energies due to the different masses of grend theK™, as
can be seen from Figs| 8 aind 10.

It is worthwhile mentioning that we obtain some broad V. SUMMARY AND CONCLUSIONS
bumps in the following four channels: (strangeness=0,
isospin=2, spin=2), (strangeness=1, isospin=3/2, spin=2 Ve have performed a study of vector meson-vector meson
(strangeness=2, isospin=0, spin=1), and (strangeness=teraction using a unitary approach. Employing the cou-
isospin=1, spin=2), see Figs. 7-10. All these are exoti®eha pled channel Bethe-Salpeter equation to unitarize the tree
nels. As mentioned before, none of the broad peaks corr@evel transition amplitudes obtained from the hidden-gaug
sponds to a pole on the complex plane, and hence, accordinggrangians, 11 states in nine strangeness-isospin-spin ¢
to the common criteria, they do not qualify as resonances. Lenels are dynamically generated. Among them, five states are
us see what is the experimental information in these sectorgissociated to those reported in the PDG, i.e., i{@370),
In the PDG[38], we find thel (1600) with strangeness=0and the f,(1710), the f»(1270), the f}(1525), the K3 (1430).
quantum number* (2*+) with a mass o600 + 100 MeV  The association of two other states, thg1700) and the
and a width of400 4+ 200 MeV. There are candidates in theo- K1(1650), are likely, particularly thek; (1650), but less cer-
retical models for this. Indeed, based on a theoreticahe$é  tain. Thef,(1370) and f»(1270) have already been reported
of the twist 4 contributions in explaining the recent L3 datain Ref. [35], and they are built mainly from thep interac-
ony*y — p°p” andy*y — p*p~ [52,153], I.V. Anikin et al.  tion. We reconfirm the findings of this early work after in-
advocate the existence of an exotic isotensor resonani@wit cluding all SU(3) coupled channels. The box diagrams in
mass ok~ 1.5 GeV and a width of- 0.4 GeV [54]. However,  our approach provide a mechanism for the dynamically gen-
we can offer here a different interpretation for the expenm  erated states to decay into two pseudoscalars. This mecha-
tal bump, since it might be identified with the broad bump thathism broadens the scalar states and the tensor states in the
we get with these quantum numbers around 1400 MeV and gtrangeness=0 and isospin=0 channel and the strangeness=1
similar width. Indeed, the experiment where the bump is reand isospin=1/2 channel but not for the spin=1 states. On the
ported [S5] sees it in thp”p” channel. It looks rather clear other hand, this mechanism contributes little to the widths
that the bump observed is the one we find ingh@mplitude,  the scalar and tensor states in the strangeness=0 andhisbspi
but this does not qualify as a resonance. channel.

One can also speculate about the scataf0*™) state re- We have used the masses of thg1270), the f5(1525),
ported in the PDG around 1400 MeV from a weak signaland thek; (1430) to fine-tune the free parameters of the ap-

found as a broad bump in Ref. [56]. As can be seen from thgroach, the subtraction constants in the vector-vectop loo
upper panel of Figl]7, we find a dip pp amplitude squared

in this channel around 1300 MeV. Such a dip in teampli-
tude can lead to a bump irf7+ production, in an analogous

Wway as W_hat occursto ﬂy@g(QSO) resonance, Wh!Ch ShOWS UP 1 This work is now being extended and we do not elaborate futthét, but
as a dip in therr cross section but as a peak~ny or other one should keep track of new developments along thisllid [58
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functions. After this is done, there is little freedom in oga . :
ing the total decay widths and practically no freedom inTABL.E_VI' The Same as Tablé 1V, but for the strangeness=0,

. . . . s isospin=0 and spin=1 channel.
changing the decay branching ratios. It is then gratifymg t

see that the total and partial decay widths of these resesanc K*K* pp ww wo oé¢
are consistent with the data. It is also interesting to sat th . 2

o , K*'K 9¢g 0 0 0 O

the two f, states appear at proper positions with reasonable
widths compared to the data. pp c o0 o0 O
Four of the 11 dynamically generated states can not be as- ww 0 0o o0

sociated with known states in the PDG. These states either
: o : we 0 o0

have small branching ratios into two pseudoscalars or are in
the strangeness=1 sector, where the experimental situatio oP 0

less satisfactory than in the strangeness=0 sector.

Another interesting finding of our work is the broad bumps
found in four exotic channels, none of which corresponds toragLe vii: The same as TablglV, but for the strangeness=0,
poles on the complex plane. One of these bumps is identifiefospin=0 and spin=2 channel.
with the structure of theX(1600), which is reported in the

PDG as a resonant state withi (2*+). Our study provides K'K™  pp  ww  wp ¢
an interpretation of this bump, stemming from heinterac- K*K* | —3¢> —V3¢> ¢*> —2¢° 24
tion in this channel, which, however, does not have any pole 102 0
associated and, hence, does not qualify as a resonance. PP —
For the resonances predicted and not reported in the PDG ww 0
we have offered suggestions on how they could be searched wé 0 0
experimentally with present experiment facilities, andcaa
only encourage further work in this direction. i 0
V. ACKNOWLEDGMENTS TABLE VIIl: The same as TabléV, but for the strangeness=0,
isospin=1 and spin=0 channel.
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: ; . ; . pp pw ped
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pw 0 0
péd 0
VI. APPENDIX
A. Treelevel transition amplitudes of the four-vector-contact TABLE IX: The same as Tabl€lV, but for the strangeness=0,
diagrams and of the ¢(u)-channel vector-exchange diagrams for isospin=1 and spin=1 channel.
different strangeness, isospin and spin channels. =
K'K* pp pw PP
K*K* 34> 3v/24> 0
TABLE V: The V;;'s of the four-vector-contact term in the pp 6g” 0
strangeness=0, isospin=0 and spin=0 channel. pw 0
K*K* pp ww we o] pP 0
K*K* 692 2\/392 _292 492 _492
PP 892 0 0 0 . P
TABLE X: The same as Table]V, but for the strangeness=0, isedp
ww 0 0 0 and spin=2 channel.
w 0 K*K* pp pw po
ol 0 K*RK* _g? 0 V242 _2g?
op 0 0 0

pw
PP
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TABLE XI: The same as Tabl€]V, but for the strangeness=0,TABLE XVII: The same as Tablé€V, but for the strangeness=2,

isospin=2 and spin=0(1,2) channel. isospin=1 and spin=0(1,2) channel.
pp (Spin=0) pp (Spin=1) pp (Spin=2) *K* (Spin=0)K* K* (Spin=1)K* K* (Spin=2)
pp (Spin=0) —44? 0 0 K*K™* (Spin=0 —44? 0 0
pp (Spin=1) 0 0 K*K™ (Spin=1 0 0
pp (Spin=2) 24> K*K* (Spin=2 2¢>

TABLE XlI: The same as Tabl&V, but for the strangeness=1,
isospin=1/2 and spin=0 channel.

pK* K*w K*¢
pK* 59° V3g? —6g®
K*w —g? V2g?
K*¢ —2g?

TABLE XIll: The same as Tabl¢_\V, but for the strangeness=1,
isospin=1/2 and spin=1 channel.

pK* K'w K*¢

pK* % 3\/2§g2 _3\/§g2
* 392 _ 3g°
K w = NG
K*¢ 392

TABLE XIV: The same as TablglV, but for the strangeness=1,
isospin=1/2 and spin=2 channel.

PK* K*w K*¢
E,2

DK 5 —1/3g2 \/392

K'w % —\5’/—25

K*(ﬁ 92

TABLE XV: The same as Tabl€lV, but for the strangeness=1,
isospin=3/2 and spin=0(1,2) channel.

pK* (Spin=0) pK™ (Spin=1) pK™ (Spin=2)
pK™* (Spin=0) —44? 0 0
pK™ (Spin=1) 0 0
pK™ (Spin=2) 2g>

TABLE XVI: The same as Tabl€1lV, but for the strangeness=2,
isospin=0 and spin=0(1,2) channel.

K" K™ (Spin=0)K* K™ (Spin=1)K* K™ (Spin=2)
K*K* (Spin=0 0 0 0
K*K* (Spin=1 0 0
K*K™ (Spin=2 0
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TABLE XVIII: The V;;’s for thet(u)-channel vector-exchange diagrams in the strangenessspin=0 and spin=0(2) channel.

K*K” pp ww weo ¢
KR g” (MpMZ+(2M7+3MZ) M2 ) (4M7 . —3s) VBg®(2M]+2M7 , —3s)  g°(2M_+2M7 . —3s) ¢°(MZ+MZ+2M7 . —3s) ¢°(—2M7—2M7} 4 +3s)
4M2 Mg M2 2M2., 2MZ., M2, M2,
2 3

op 2% (4 - Fg) 0 0 0
ww 0 0 0
wo 0 0
P 0

TABLE XIX: The same as Table XV, but for the strangenessis@spin=0 and spin=1 channel.

K*K* pp ww we P9

e 3 38 Gl ) R 5 5 .
pp 0 0 0 0
ww 0 0 0
wo 0 0
el 0

TABLE XX: The same as Table_XVIlI, but for the strangenesssOspin=1 and spin=0(2) channel.

K*K* Pp pw pd
KR 92(1\121%2—(1\45)—21%2)1%5) (4M% . —3s) 0 g2 (M2+M2Z+2M3F . —3s) g2 (1\4§+1\4§+21\4§(* —35)
4M2 M; M2 VZMZ, Mz,
pp 0 0 0
pw 0 0
pd 0

TABLE XXI: The same as Table_XVIlI, but for strangeness=@sigin=1 and spin=1 channel.

K'K* pp pw po

K*K* a” (M, Mif(ﬂii” ;;Egigi)(ﬂffa —32) 92(%@521?:* —3) 0 0
pp ' (4 — %) 0 0
pw 0 0
pod 0

TABLE XXII: The same as Table XVI]l, but for the strangene@sisospin=2 and spin=0(1,2) channel.

pp (Spin=0) pp (Spin=1) pp (Spin=2)
pp (Spin=0) | g2 ( 2 - 4) 0 0
pp (Spin=1) 0 0
pp (Spin=2) g ( 37~ 4)
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TABLE XXIII: The same as Table_XVIII, but for strangeness3dgspin=1/2 and spin=0(2) channel.

pK* K*w
K 92 (4M§ i 4+ (8s—9M2) M +2(BMp+5sM2 —652 )M 7 —M2 (Mg —2sM2+35))  V3g% (—=Mpu+(M2+M2+25) My w4+ (s—M2)MZ+s(M2-3s))
P asMIMZ, 1502,
K 92 (M3 —2s M2+ Mp +35%—2(M2+5)MZ.)
w 481\/I?<*
K*¢
K \/ggQ(]W;L{* —(M2+M3+2s) M7 +(M2—s) M3 +5(35s—M2))
P 2sM 3.,
K 92 (= Mipeu+(MZ+M2+25) M7 s+ (s—MZ) M2 +5(MF —35))
w 2\/53]%?(*
K 92 (M} —2sMJ+ M +35%—2(MJ+s) M3 )
¢ 281\/I?<*

TABLE XXIV: The same as Tablg_XVIlI, but for the strangenesisospin=1/2 and spin=1 channel.

pK* K'w
K g2 (JVI/§72SAI;‘+352]\I§ +4MS, . +(8377IV13)]\4§(* +2(]VI;1+331VI§7652)1VI?<* ) \/§92(7M§(* +(1VI§+J\45+25)]M§(* +(s—]\4§)1VIf}+s(]VI§—35))
P asMIMZ, 502,
2 4 2 4 2 2 2
« 9% (M2 —2s M2+ M +35%—2(M2+5) M7 )
Ky - = = 4sMZ, =
K*¢
K V302 (Mpo —(M2+M2+25) M2+ (M2 —s) M2 +5(3s—M2))
P 2502,
K 9 (Mfcw —(M2+M2+25) MZ i +(MZ—s) M2 +5(3s—M7))
« 2v2s M2,
K 92(1\4;7251@#1\4;* +35272(1VI§+5)]\4§(*)
9 - 2s M2,

TABLE XXV: The same as Table_XVII, but for the strangenessisbspin=3/2 and spin=0(2) and Spin=1 channel.

. g2 (M —2sM2 4352 M2 —MS , +(3M2 —25)M§ o +(—3M* —45sM2 4352 ) M3
pK* [Spin=0(2)] (oM 157N M (QSA’}gMg)(* wf O e P
2 2 2 4 2 4 2 2
N . 9? (M3 —M2) (=M} +2sMJ+Mp i 352 +2s M7 )
pK™ (Spin=1) - 2M2MZ,

TABLE XXVI: The same as Tablg_XVIII, but for the strangenegsisospin=0 and spin=0(1,2) channel.

K*K* (Spin=0) K*K* (Spin=1) K*K* (Spin=2)
K* K™ (Spin=0) 0 0 0
K*K* (Spin=1) g?((3m3 721»1‘34)1]15?];%45[1513))(41»@(* —3s) 0
K*K* (Spin=2) 0

TABLE XXVII: The same as TablE_XVIII, but for the strangene&s isospin=1 and spin=0(1,2) channel.

K* K™ (Spin=0) K*K* (Spin=1) K*K* (Spin=2)
- . 2(M2M32+(2M2+M2)M2) (4MZ , —3s
K" K* (Spin=0)| — L aME+( 4;{3M§)Mg ICLSED 0 0
K*K* (Spin=1) 0 0
. . g?(M2M32+(2M2+M2)M2) (aM2Z, —3s
K*K* (Spin=2) _ g (Mpmg+( 41&31”%%{3 ) (407, —3s)




TABLE XXVIII: The abbreviations used in calculating the bdia-
grams:G,L- = G4(T)’LP17 Mp2, Mp3, Mp4, S, k?, k& kg, kg) with i =
1---20 andpl, p2, p3, p4 the particles appearing in the box di-

agram with the order as given in Fig. 2. In the test;(u) = U1,1
Ga(mpt, Mmp2, Mp3, Mpa, 8, kL, k3, kS, k). V1,2
i | pl p2 p3 pd i | pl p2 p3 p4d V13
1|7 K n K 2| n K 7w K V14
3| K n K n 4 | K © K =« V.
5|7 K n K 6| K 7 K
717 K K K 8| K © 7 =m
9|« K K KI|10] K K K K V3,4
11| =« T T T 12 | K n K V4,4
B3| K = K n||l4] K K K 17
I5|K K K =« ||16| K K @« = 3
7|~ n K K |18| n «n @ K
9| K n K K||20lK = K K

B. Box diagram amplitudes 4

In this section, we provide the explicit box diagram am-
plitudes, corresponding to Eq. (22), for different stramegs
and isospin but only spin=0 channels. Those amplitudes for; ;
spin=2 channels can be obtained by multiplyyp to the v
corresponding spin=0 amplitudes, as explained in the main®~
text. To simplify the expressions, we have used the abbreviav1,3

tions defined in Table XXVIIIl. T

1.

V4,4

V2,2

Strangeness=0, isospin=0, and spin=0: There are fivez,3
channels, i.e. K*K*, pp, ww, wo, ¢¢, with the order

V3,3
of1,2,3,4,5:

V33 =

22

channels, i.e. K*K*, pp, pw, p¢, with the order 1, 2,
3, 4:

= 209g*(9G1 — 3Go + 12G 12 + 12G13 — 3G + G6)
= 0,

= —20v2¢*(3G7 + 3G (u) — Gg — Go(u))
4094(3(?7 + 3@7(u) — Gy — ég(u))

V23 =124 =0,

80g*(G1o + Gho(u))),

= —80\/594(610 + élo(u))

= 160g*(G1o + G1o(u))

. Strangeness=0, isospin=2, and spin=0: There is only

one channel in this sector, i.@p:

v = 320¢'G11

. Strangeness=1, isospin=1/2, and spin=0: There are

three channels, i.epK*, K*w, and K*¢, with the or-
derl, 2, 3:

= 20g*(9G14 + G5 + 4G (u) + 4G17(u) + 16G1g)
= —20V3¢*(3G14(u) — G15(u) — 4G17)

= 20\/694(3614 (u) = C?15(“) - 4617)

= 60g%(G19 + G20),

= —60v2g*(G19 + G2)

= 1209%(G19 + G20)

= 60g*(3G1 + 3G2 + 12G3 + 4G4 + 3G5 + 3Gp), 5. Strangeness=1, isospin=1/2, and spin=0: There is only

= 40v3¢*(3G7 + 8Gs + 3Gy),

one channel in this sector, i.@*:

= —1209%(G7 + Gy), v = 80¢*(Gis + Gis(u) + Gir(u) + Gis)
= 120¢*(G7 + G7(u) + Go + Go(u)) 4 A |
_ 405 ~ 6. Strangeness=2, isospin=0, and spin=0: There is only
= —240g ~(G7 + G9~) one channel in this sector, i.6€,* K *:
= 80g*(3G10 + 16G11)
= —80\/594610 v=0.
= 80v3¢*(Gio + G N . .

Vag'( 41? + Go(u), 7. Strangeness=2, isospin=1, and spin=0: There is only
= —160v/3g" G, one channel in this sector, i.6¢" K *:
= 800G 204" (9G+ + 3G + 3G + Ch)

~ ~ v = 5
= —80g"(G1o + Gro(u)), g ' ? ‘
= 160" G0,
_ 16094(610 + éw(u)), C. G, intheevaluation of thefour-point loop function
= —3204*G _ . . :
4g~ 10 Here we provide the explicit form &¥,,, which appears in

= 3209"Gho- the evaluation of the four-point loop functiai, [Eq. (28)].

The symbols are the same as in the main text, except here we

. Strangeness=0, isospin=1, and spin=0: There are fourave replaced?, k9, £, andk{ by E1, F», E3 andEj.
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w1 (wg (wa + wy) B3 — 2P%3w4F3 — (wo + w3) ((wg +wi) wh + (Wi + Bwaws + 2w3) wa + wy ((w3 + wy)?
—s))) Bf
2w (—wg (wo + wy) E§’ + P0w3w4E§ + w3 (wg + 2 (w3 4+ wyq) w% + (wg + dwaws + 2wi) wo+
wy (S + (w3 + w4)2)) B3 4 P% (ws 4 w3) wy (—s + wi + (w3 +wa) 2+ wo (w3 + 2w4))) E}
w1 (w3 (w2 4+ wy) E§ + 2P0w3w4E§’ — 2ws (wg’ + w3ws 4 w3 (w3 + 2wq) wo + w? (wo + wy) +
w1 (w2 + wy) (w2 + w3 + wy) + wy (33 + wg +w? + w3w4)) Eg—i—
2P%wswy (s + 2w? — 22 — wg — W2 — dwows — dwowy — 4wswy + 2w1 (wo + w3 + w4)) Es+
(w2 + w3) (w3 + wa) wh + (W5 + Bwsws + 2w3) Wi + (W5 + bwaw] + 6wiws + 2w) — 25wa) W3+
(wg + 3w4w§ + 6wiw§ + 2wy (s + 3wi) w3 + 2cuf1l — 2swi) wo + wy (82 -2 (wg + waws + wi) s+

(ws + w4)2 (wg + wi)) + 2w% ((w3 + wyq) wg + (wg + 3waws + 2wi) wa + wy ((w3 + w4)2 _ s)) +

2w1 (w2 + w3 + wy) ((wg +wy)wi + (wg + 3waws + Zuﬁ) wo + wy ((w3 + w4)2 — 5)))) E3

— 2w (P0w3w4E§ — w3 (wg’ + 2w4w§ + 2wiw2 + wi + 2w1 (wo + w4)2 + swy + w% (wo + w4)) E§—|—

PPwswy (—s +w? 4+ 2w2 — 2w§ + w? — 2wows + dwowy — 2wawy + w1 (dwy — 2ws3 + 4w4)) E32,—|—
w3 (wg’ + 2 (w3 + wa) wh + (w5 + dwsws + 2w7) Wi + 2wy (s + (w3 + w4)2> wi+
2wy ((2@03 —wy) S+ wy (w3 + w4)2) wo + wy (52 + (W] — 2waws — 2w3) s + Wi (w3 + w4)2) +
w% (wg + 2 (w3 + wyq) wg + (w§ + dwyws + Zuﬁ) wa + wy (s + (w3 + w4)2)) +
4 3 2 2\, 2 2
w1 (w2 + 2 (w3 +wq) ws + (w3 + dwyws + 2w4) w5 + 2wy (s + (w3 + ws) ) wo+
wy ((2w3 —wq) S+ wy (w3 + ws) 2))) Es+
po (wo + ws3) wy (wg + W3WS + 2w4w§’ + wgwg + wfw% + 2w3w4w§ + wgwg + UJ3W2W2 + 2w§w4w2 + wg‘ + wgwf—

S (w% + 2 (wy +w3)wy + wg + wg + wgwg) + 2w§w4 + w% (wg + (w3 4 2wq) wo + (w3 + w4)2) +

2w (w% + (w3 + 2ws) w3 + (w3 + ws)’ wa + wy(ws + ‘*’4)2))) E

— (w1 +w2) (w3 (w2 + wa)wi + (W5 + Bwsws + 2w})wy + wa (w2 +wa)® — 5)) B+

2P%wswy (5 — wi — (w2 + wa)? — wi (w2 + 2wy)) B — w3 (w2 + wa)wi + (w2 + wy) (w2 + 2 (w3 + ws)) wi+
(wg + (4ws + Bwy) wg +2 (wg + bwaws + SwE) wo + 2wy (—s + wg + wf + 3w3w4)) w% + (w;1 + (2w3 + 3wy) wg—i—
2 (wg + Bwaws + 3wi) w2 + 2wy (s + Swg + 3w? + 7w3w4) wa + 2wa(w3 + wy) (wa (2ws + wyg) — s)) w1+

wy (—s + w3 + 2w3 + w2 + 2wows + 2w3w4) ((wz + w4)2 — 5)) E? + 2P w3wy (w‘f + (w2 + 2 (w3 + wq)) Wi+
(w3 + 2 (ws + wa) wa + w3 + W] + dwsws) Wi + (W5 + 2 (w3 + wa) wi + (w3 + dwsws + w3 ) wa+

2wzwy (w3 + wy)) w1 + (w2 + w3)*(we +wy)? — s (w% + (wo + 2w3) w1 + (w2 + W3)2)) Es+

(w1 + ws) (w2 + ws) (((wg + wy) wi + (W5 + Bwaws + 2w} ) wa + wy ((Wg +wy)® = s)) wi+

(wa + w3 + 2wy) ((wg + wy) wg + (wg + 3wyws + 2wi) wa + wy ((wg + wy) 2 s)) w%—i—

((wg + 3waws + 2wi) wg’ + (wg + 6w4w§ + 1Owiw3 + 5wi’ — sw4) wg + wy (Bws + dwy) ((w3 + w4)2 _ 3) wo+
Wy (52 — (wg + dwaws + 2wi) s+ wy (w3 + w4)2 (2ws + w4)>> w1+

(wo + ws3) wy ((wg + w4)2 — s) ((wg + w4)2 — s))) ) (34)
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