34,705 research outputs found
Spokes cluster: The search for the quiescent gas
Context. Understanding the role of fragmentation is one of the most important
current questions of star formation. To better understand the process of star
and cluster formation, we need to study in detail the physical structure and
properties of the parental molecular cloud. The Spokes cluster, or NGC 2264 D,
is a rich protostellar cluster where previous N2H+(1-0) observations of its
dense cores presented linewidths consistent with supersonic turbulence.
However, the fragmentation of the most massive of these cores appears to have a
scale length consistent with that of the thermal Jeans length, suggesting that
turbulence was not dominant. Aims. These two results probe different density
regimes. Our aim is to determine if there is subsonic or less-turbulent gas
(than previously reported) in the Spokes cluster at higher densities. Methods.
We present APEX N2H+(3-2) and N2D+(3-2) observations of the NGC2264-D region to
measure the linewidths and the deuteration fraction of the higher density gas.
The critical densities of the selected transitions are more than an order of
magnitude higher than that of N2H+(1-0). Results. We find that the N2H+(3-2)
and N2D+(3-2) emission present significantly narrower linewidths than the
emission from N2H+(1-0) for most cores. In two of the spectra, the nonthermal
component is close (within 1-sigma) to the sound speed. In addition, we find
that the three spatially segregated cores, for which no protostar had been
confirmed show the highest levels of deuteration. Conclusions. These results
show that the higher density gas, probed with N2H+ and N2D+(3-2), reveals more
quiescent gas in the Spokes cluster than previously reported. More high-angular
resolution interferometric observations using high-density tracers are needed
to truly assess the kinematics and substructure within NGC2264-D. (Abridged)Comment: 8 pages, 4 figures. Accepted in A&
Fold-Saddle Bifurcation in Non-Smooth Vector Fields on the Plane
This paper presents results concerning bifurcations of 2D piecewise-smooth
dynamical systems governed by vector fields. Generic three parameter families
of a class of Non-Smooth Vector Fields are studied and its bifurcation diagrams
are exhibited. Our main result describes the unfolding of the so called
Fold-Saddle singularity
Linear Invariant Systems Theory for Signal Enhancement
This paper discusses a linear time invariant (LTI) systems approach to signal enhancement via projective subspace techniques. It provides closed form expressions for the frequency response of data adaptive finite impulse response eigenfilters. An illustrative example using speech enhancement is also presented.Este artigo apresenta a aplicação da teoria de sistemas lineares invariantes no tempo (LTI) na análise de técnicas de sub-espaço. A resposta em frequência dos filtros resultantes da decomposição em valores singulares é obtida aplicando as propriedades dos sistemas LTI
Upper limit on mh in the MSSM and M-SUGRA vs. prospective reach of LEP
The upper limit on the lightest CP-even Higgs boson mass, mh, is analyzed
within the MSSM as a function of tan(beta) for fixed mtop and Msusy. The impact
of recent diagrammatic two-loop results on this limit is investigated. We
compare the MSSM theoretical upper bound on mh with the lower bound obtained
from experimental searches at LEP. We estimate that with the LEP data taken
until the end of 1999, the region mh < 108.2 GeV can be excluded at the 95%
confidence level. This corresponds to an excluded region 0.6 <= tan(beta) <=
1.9 within the MSSM for mtop = 174.3 GeV and Msusy <= 1 TeV. The final
exclusion sensitivity after the end of LEP, in the year 2000, is also briefly
discussed. Finally, we determine the upper limit on mh within the Minimal
Supergravity (M-SUGRA) scenario up to the two-loop level, consistent with
radiative electroweak symmetry breaking. We find an upper bound of mh \approx
127 GeV for mtop = 174.3 GeV in this scenario, which is slightly below the
bound in the unconstrained MSSM.Comment: 10 pages, 3 figure
Sensitivity to SUSY Seesaw Parameters and Lepton Flavour Violation
We address the constraints on the SUSY seesaw parameters arising from Lepton
Flavour Violation observables. Working in the Constrained Minimal
Supersymmetric Standard Model extended by three right-handed (s)neutrinos, we
study the predictions for the branching ratios of and channels. We impose compatibility with neutrino data, electric
dipole moment bounds, and further require a successful baryon asymmetry of the
Universe (via thermal leptogenesis). We emphasise the interesting interplay
between and the LFV muon decays, pointing out the hints on the
SUSY seesaw parameters that can arise from measurements of and
LFV branching ratios. This is a brief summary of the work of Ref.
\cite{Antusch:2006vw}.Comment: 6 pages, 4 figures. Presented at 5th Flavor Physics and CP Violation
Conference (FPCP 2007), Bled, Slovenia, 12-16 May 200
Intermunicipal Health Care Consortia in Brazil: Strategic Behavior, Incentives and Sustainability
Photospheric properties and fundamental parameters of M dwarfs
M dwarfs are an important source of information when studying and probing the
lower end of the Hertzsprung-Russell (HR) diagram, down to the hydrogen-burning
limit. Being the most numerous and oldest stars in the galaxy, they carry
fundamental information on its chemical history. The presence of molecules in
their atmospheres, along with various condensed species, complicates our
understanding of their physical properties and thus makes the determination of
their fundamental stellar parameters more challenging and difficult. The aim of
this study is to perform a detailed spectroscopic analysis of the
high-resolution H-band spectra of M dwarfs in order to determine their
fundamental stellar parameters and to validate atmospheric models. The present
study will also help us to understand various processes, including dust
formation and depletion of metals onto dust grains in M dwarf atmospheres. The
high spectral resolution also provides a unique opportunity to constrain other
chemical and physical processes that occur in a cool atmosphere The
high-resolution APOGEE spectra of M dwarfs, covering the entire H-band, provide
a unique opportunity to measure their fundamental parameters. We have performed
a detailed spectral synthesis by comparing these high-resolution H-band spectra
to that of the most recent BT-settl model and have obtained fundamental
parameters such as effective temperature, surface gravity, and metallicity
(Teff, log g and [Fe/H]) respectively.Comment: 15 pages, 10 figures, accepted for publication in A&
- …
