694 research outputs found
A study of the evolution of concentration in the pharmaceutical industry for the United Kingdom. Studies: Evolution of concentration and competition series
Optimum solids concentration in an agitated vessel
Particle suspension in high-concentration slurries has been studied using radial-, mixed-, and axial-flow impellers. Impeller power measurements in this study were linked to the mass of solids suspended in the agitation system rather than the suspension volume. This approach was based on the consideration that the rate of dissolution or reaction depends to a large extent on the exposed surface area or mass of solids and might not be affected by the suspension volume, once off-bottom suspension is achieved. It was found that the specific power, based on the mass of solids, can be minimized by operating the system at relatively higher solids concentrations in the range of 0.20-0.35 (v/v) for the solids, impeller types, and geometrical conditions used in this work. Overall, improved energy efficiency can be achieved by using higher-power-number impellers under unbaffled conditions over a range of solids concentrations. A case example is illustrated to demonstrate the benefits of adopting some of the optimization methods highlighted in this article
(In Press) Rheological characterisation of municipal sludge: A review
Sustainable sludge management is becoming a major issue for wastewater treatment plants due to increasing urban populations and tightening environmental regulations for conventional sludge disposal methods. To address this problem, a good understanding of sludge behaviour is vital to improve and optimize the current state of wastewater treatment operations. This paper provides a review of the recent experimental works in order for researchers to be able to develop a reliable characterization technique for measuring the important properties of sludge such as viscosity, yield stress, thixotropy, and viscoelasticity and to better understand the impact of solids concentrations, temperature, and water content on these properties. In this context, choosing the appropriate rheological model and rheometer is also important
Clear model fluids for peculiar rheological properties of thickened digested sludge
Optimising flow processes in wastewater treatment plants requires that designers and operators take into account the flow properties of the sludge. Moreover, due to increasingly more stringent conditions on final disposal avenues such as landfill, composting, incineration etc., practitioners need to produce safer sludge in smaller quantities. Anaerobic digestion is a key treatment process for solids treatment and pathogen reduction. Due to the inherent opacity of sludge, it is impossible to visualise the mixing and flow patterns inside an anaerobic digester. Therefore, choosing an appropriate transparent model fluid which can mimic the rheological behaviour of sludge is imperative for visualisation of the hydrodynamic functioning of an anaerobic digester. Digested sludge is a complex material with time dependent non-Newtonian thixotropic characteristics. In steady state, it can be modelled by a basic power-law. However, for short-time processes the HerscheleBulkley model can be used to model liquid-like properties. The objective of this study was to identify transparent model fluids which will mimic the behaviour of real sludge. A comparison of three model fluids, Carboxymethyl Cellulose (CMC), Carbopol gel and Laponite clay revealed that these fluids could each model certain aspects of sludge behaviour. It is concluded that the rheological behaviour of sludge can be modelled using CMC in steady state flow at high shear rates, Carbopol gel for short-time flow processes and Laponite clay suspension where time dependence is dominant
Monomeric PcrA helicase processively unwinds plasmid lengths of DNA in the presence of the initiator protein RepD
The helicase PcrA unwinds DNA during asymmetric replication of plasmids, acting with an initiator protein, in our case RepD. Detailed kinetics of PcrA activity were measured using bulk solution and a single-molecule imaging technique to investigate the oligomeric state of the active helicase complex, its processivity and the mechanism of unwinding. By tethering either DNA or PcrA to a microscope coverslip surface, unwinding of both linear and natural circular plasmid DNA by PcrA/RepD was followed in real-time using total internal reflection fluorescence microscopy. Visualization was achieved using a fluorescent single-stranded DNA-binding protein. The single-molecule data show that PcrA, in combination with RepD, can unwind plasmid lengths of DNA in a single run, and that PcrA is active as a monomer. Although the average rate of unwinding was similar in single-molecule and bulk solution assays, the single-molecule experiments revealed a wide distribution of unwinding speeds by different molecules. The average rate of unwinding was several-fold slower than the PcrA translocation rate on single-stranded DNA, suggesting that DNA unwinding may proceed via a partially passive mechanism. However, the fastest dsDNA unwinding rates measured in the single-molecule unwinding assays approached the PcrA translocation speed measured on ssDNA
Three participatory geographers: reflections on positionality and working with participants in researching religions, spiritualities, and faith
This paper advances the geographies of religion, spirituality and faith's limited attention to positionality by discussing the critical issues raised when using participatory approaches. Reflecting on three cases of participatory research, we foreground the dynamics of being a researcher with faith when working with participants from faith communities. Advocating participatory approaches as valuable methodologies that should be used more extensively to explore beliefs, faith practices, and social justice, we argue that greater attention needs to be given to the positionality of researchers undertaking this sort of research. Our cases raise three themes for discussion. First, the variety of ways in which faith positionalities influence how research is developed, conducted and concluded. Second, the intersections between our faith and other positionalities and how they shape our roles and relationships with research participants. Third, the fluid and multifaceted nature of faith positionalities and how they are changed, emphasized, and softened through the dynamics and entanglements of fieldwork. In doing so, we reflect on the complexities of being a researcher with faith, argue that faith positionality is a helpful dimension of their research rather than a limitation, and that all cultural, social and historical geographical researchers should reflect on their faith positionality
Allogeneic hematopoietic stem cell transplantation for severe, refractory juvenile idiopathic arthritis.
Patients with juvenile idiopathic arthritis (JIA) can experience a severe disease course, with progressive destructive polyarthritis refractory to conventional therapy with disease-modifying antirheumatic drugs including biologics, as well as life-threatening complications including macrophage activation syndrome (MAS). Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative immunomodulatory strategy for patients with such refractory disease. We treated 16 patients in 5 transplant centers between 2007 and 2016: 11 children with systemic JIA and 5 with rheumatoid factor-negative polyarticular JIA; all were either refractory to standard therapy, had developed secondary hemophagocytic lymphohistiocytosis/MAS poorly responsive to treatment, or had failed autologous HSCT. All children received reduced toxicity fludarabine-based conditioning regimens and serotherapy with alemtuzumab. Fourteen of 16 patients are alive with a median follow-up of 29 months (range, 2.8-96 months). All patients had hematological recovery. Three patients had grade II-IV acute graft-versus-host disease. The incidence of viral infections after HSCT was high, likely due to the use of alemtuzumab in already heavily immunosuppressed patients. All patients had significant improvement of arthritis, resolution of MAS, and improved quality of life early following allo-HSCT; most importantly, 11 children achieved complete drug-free remission at the last follow-up. Allo-HSCT using alemtuzumab and reduced toxicity conditioning is a promising therapeutic option for patients with JIA refractory to conventional therapy and/or complicated by MAS. Long-term follow-up is required to ascertain whether disease control following HSCT continues indefinitely
Using Barkhausen Noise to Measure Coating Depth of Coated High-Speed Steel
Coated high-speed steel tools are widely used in machining processes as they offer an excellent tool life to cost ratio, but they quickly need replacing once the coated layer is worn away. It would be therefore useful to be able to measure the tool life remaining non-destructively and cheaply. To achieve this, the work presented here aims to measure the thickness of the coated layer of high-speed cutting tools by using Barkhausen noise (BHN) techniques. Coated high-speed steel specimens coated with two different materials (chromium nitride (CrN), titanium nitride (TiN)) were tested using a cost-effective measuring system developed for this study. Sensory features were extracted from the signal received from a pick-up coil and the signal features, Root mean square, peak count, and signal energy, were successfully correlated with the thickness of the coating layer on high-speed steel (HSS) specimens. The results suggest that the Barkhausen noise measuring system developed in this study can successfully indicate the different thickness of the coating layer on CrN/TiN coated HSS specimens
TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism.
DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.This work was supported by funding from the Medical Research Council and the European Research Council (ERC, 281847) (A.P.J.), the Lister Institute for Preventative Medicine (A.P.J. and G.S.S.), Medical Research Scotland (L.S.B.), German Federal Ministry of Education and Research (BMBF, 01GM1404) and E-RARE network EuroMicro (B.W), Wellcome Trust (M. Hurles), CMMC (P.N.), Cancer Research UK (C17183/A13030) (G.S.S. and M.R.H), Swiss National Science Foundation (P2ZHP3_158709) (O.M.), AIRC (12710) and ERC/EU FP7 (CIG_303806) (S.S.), Cancer Research UK (C6/A11224) and ERC/EU FP7 (HEALTH-F2- 2010-259893) (A.N.B. and S.P.J.).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/ng.345
The influence of ultrasonic surface rolling on the fatigue and wear properties of 23-8N engine valve steel
An ultrasonic surface rolling (USR) technique was employed for the first time as a method to enhance the fatigue and wear resistance of 33Cr23Ni8Mn3N (23–8N) austenitic engine valve steel. The microstructure of the modified layer on the material surface was characterised by scanning electron microscopy (SEM) coupled with electron back scatter diffraction (EBSD) and transmission electron microscope (TEM) methods. Nanoscale lamellar grains were discovered on the top surface of the treated material, and an increase of compressive residual stress and microhardness of the surface material observed. A comparative fretting wear test and a rotating bending fatigue test were performed out to verify the surface enhancement effect. Fractured and worn faces of specimens were evaluated through utilizing SEM and energy–dispersive spectroscopy (EDS). Compared to the untreated material, the coefficient of friction of USR treated material was significantly reduced, and the wear resistance was improved. The fatigue strength of a specimen treated at 25 °C was increased from 528 MPa to 730 MPa (38.3 %). At 650 °C, the fatigue strength increased from 345 MPa to 400 MPa (15.9 %). The fatigue resistance extension and wear resistance improvement of treated specimen can be attributed to a combination of beneficial compressive residual stress, work hardening, and the modified microstructure with fine-grains in the surface layer, and thus demonstrates the validity of this novel technique
- …
