641 research outputs found
Hydrothermal activity and magma genesis along a propagating back-arc basin: Valu Fa Ridge (southern Lau Basin)
Valu Fa Ridge is an intraoceanic back-arc spreading center located at the southern prolongation of the Lau basin. Bathymetric observations as well as detailed sampling have been carried out along the spreading axis in order to trace hydrothermal and volcanic activity and to study magma generation processes. The survey shows that widespread lava flows from recent volcanic eruptions covered most of the Vai Lili hydrothermal vent field; only diffuse low-temperature discharge and the formation of thin layers of siliceous precipitates have been observed. Evidence of present-day hydrothermal activity at the Hine Hina site is indicated by a thermal anomaly in the overlying water column. Our studies did not reveal any signs of hydrothermal activity either above the seismically imaged magma chamber at 22°25âČS or across the southern rift fault zone (22°51âČS). Lavas recovered along the Valu Fa Ridge range from basaltic andesites to rhyolites with SiO2 contents higher than reported from any other intraoceanic back-arc basin. On the basis of the highly variable degrees of crystal fractionation along axis, the development of small disconnected magma bodies is suggested. In addition, the geochemical character of the volcanic rocks shows that the transition zone from oceanic spreading to propagating rifting is located south of the Hine Hina vent field in the vicinity of 22°35âČS
A Reference Section Through Fast-Spread Lower Oceanic Crust, Wadi Gideah, Samail Ophiolite (Sultanate of Oman): Petrography and Petrology
In the absence of a complete profile through fast-spreading modern oceanic crust, we established a reference profile through the whole paleo crust of the Samail ophiolite (Sultanate of Oman), which is regarded as the best analogue for fast-spreading oceanic crust on land. To establish a coherent data set, we sampled the Wadi Gideah in the Wadi-Tayin massif from the mantle section up to the sheeted dikes and performed different analytical and structural investigations on the same suite of samples. This paper reports our studies of the lower crust, a 5Â km thick pile of gabbros, focusing on petrographic features and on the results of mineral analyses. Depth profiles of mineral compositions combined with petrological modeling reveal insights into the mode of magmatic formation of fast-spreading lower oceanic crust, implying a hybrid accretion mechanism. The lower two thirds of the crust, mainly consisting of layered gabbros, formed via the injection of melt sills and in situ crystallization. Here, upward moving fractionated melts mixed with more primitive melts through melt replenishments, resulting in a slight but distinct upward differentiation trend. The upper third of the gabbroic crust is significantly more differentiated, in accord with a model of downward differentiation of a primitive parental melt originated from the axial melt lens located at the top of the gabbroic crust. Our hybrid model for crustal accretion requires a system to cool the deep crust, which was established by hydrothermal fault zones, initially formed on-axis at very high temperatures
Form Geometry and the 'tHooft-Plebanski Action
Riemannian geometry in four dimensions, including Einstein's equations, can
be described by means of a connection that annihilates a triad of two-forms
(rather than a tetrad of vector fields). Our treatment of the conformal factor
of the metric differs from the original presentation of this result, due to
'tHooft. In the action the conformal factor now appears as a field to be
varied.Comment: 12pp, LaTe
Sub-arc mantle enrichment in the Sunda rear-arc inferred from HFSE systematics in high-K lavas from Java
Many terrestrial silicate reservoirs display a characteristic depletion in Nb, which has been explained in some studies by the presence of reservoirs on Earth with superchondritic Nb/Ta. As one classical example, K-rich lavas from the Sunda rear-arc, Indonesia, have been invoked to tap such a high-Nb/Ta reservoir. To elucidate the petrogenetic processes active beneath the Java rear-arc and the causes for the superchondritic Nb/Ta in some of these lavas, we studied samples from the somewhat enigmatic Javanese rear-arc volcano Muria, which allow conclusions regarding the across-arc variations in volcanic output, source mineralogy and subduction components. We additionally report some data for an along-arc sequence of lavas from the Indonesian part of the Sunda arc, extending from Krakatoa in the west to the islands of Bali and Lombok in the east. We present major and trace element concentrations, SrâNdâHfâPb isotope compositions, and high-field-strength element (HFSE: Nb, Ta, Zr, Hf, W) concentrations obtained via isotope dilution and MC-ICP-MS analyses. The geochemical data are complemented by melting models covering different source compositions with slab melts formed at variable PâT conditions. The radiogenic isotope compositions of the frontal arc lavas in combination with their trace element systematics confirm previously established regional variations of subduction components along the arc. Melting models show a clear contribution of a sediment-derived component to the HFSE budget of the frontal arc lavas, particularly affecting ZrâHf and W. In contrast, the K-rich rear-arc lavas tap more hybrid and enriched mantle sources. The HFSE budget of the rear-arc lavas is in particular characterized by superchondritic Nb/Ta (up to 25) that are attributed to deep melting involving overprint by slab melts formed from an enriched garnetârutile-bearing eclogitic residue. Sub-arc slab melting was potentially triggered along a slab tear beneath the Sunda arc, which is the result of the forced subduction of an oceanic basement relief ~ 8 Myr ago as confirmed by geophysical studies. The purported age of the slab tear coincides with a paucity in arc volcanism, widespread thrusting of the Javanese basement crust as well as the short-lived nature of the K-rich rear-arc volcanism at that time. © 2021, The Author(s)
The variable mass loss of the AGB star WX Psc as traced by the CO J=1-0 through 7-6 lines and the dust emission
Low and intermediate mass stars lose a significant fraction of their mass
through a dust-driven wind during the Asymptotic Giant Branch (AGB) phase.
Recent studies show that winds from late-type stars are far from being smooth.
Mass-loss variations occur on different time scales, from years to tens of
thousands of years. The variations appear to be particularly prominent towards
the end of the AGB evolution. The occurrence, amplitude and time scale of these
variations are still not well understood.
The goal of our study is to gain insight into the structure of the
circumstellar envelope (CSE) of WX Psc and map the possible variability of the
late-AGB mass-loss phenomenon.
We have performed an in-depth analysis of the extreme infrared AGB star WX
Psc by modeling (1) the CO J=1-0 through 7-6 rotational line profiles and the
full spectral energy distribution (SED) ranging from 0.7 to 1300 micron. We
hence are able to trace a geometrically extended region of the CSE.
Both mass-loss diagnostics bear evidence of the occurrence of mass-loss
modulations during the last ~2000 yr. In particular, WX Psc went through a high
mass-loss phase (Mdot~5e-5 Msun/yr) some 800 yr ago. This phase lasted about
600 yr and was followed by a long period of low mass loss (Mdot~5e-8 Msun/yr).
The present day mass-loss rate is estimated to be ~6e-6 Msun/yr.
The AGB star WX Psc has undergone strong mass-loss rate variability on a time
scale of several hundred years during the last few thousand years. These
variations are traced in the strength and profile of the CO rotational lines
and in the SED. We have consistently simulated the behaviour of both tracers
using radiative transfer codes that allow for non-constant mass-loss rates.Comment: 12 pages, accepted for publication in A&
Wave propagation in linear electrodynamics
The Fresnel equation governing the propagation of electromagnetic waves for
the most general linear constitutive law is derived. The wave normals are found
to lie, in general, on a fourth order surface. When the constitutive
coefficients satisfy the so-called reciprocity or closure relation, one can
define a duality operator on the space of the two-forms. We prove that the
closure relation is a sufficient condition for the reduction of the fourth
order surface to the familiar second order light cone structure. We finally
study whether this condition is also necessary.Comment: 13 pages. Phys. Rev. D, to appea
Phonon and Elastic Instabilities in MoC and MoN
We present several results related to the instability of MoC and MoN in the
B1 (sodium chloride) structure. These compounds were proposed as potential
superconductors with moderately high transition temperatures. We show that the
elastic instability in B1-structure MoN, demonstrated several years ago,
persists at elevated pressures, thus offering little hope of stabilizing this
material without chemical doping. For MoC, another material for which
stoichiometric fabrication in the B1-structure has not proven possible, we find
that all of the cubic elastic constants are positive, indicating elastic
stability. Instead, we find X-point phonon instabilities in MoC (and in MoN as
well), further illustrating the rich behavior of carbo-nitride materials. We
also present additional electronic structure results for several transition
metal (Zr, Nb and Mo) carbo-nitride systems and discuss systematic trends in
the properties of these materials. Deviations from strict electron counting
dependencies are apparent.Comment: 5 pages and 4 trailing figures. Submitted to PR
- âŠ