2,807 research outputs found

    The connection between the radio jet and the gamma-ray emission in the radio galaxy 3C 120

    Get PDF
    We present the analysis of the radio jet evolution of the radio galaxy 3C 120 during a period of prolonged gamma-ray activity detected by the Fermi satellite between December 2012 and October 2014. We find a clear connection between the gamma-ray and radio emission, such that every period of gamma-ray activity is accompanied by the flaring of the mm-VLBI core and subsequent ejection of a new superluminal component. However, not all ejections of components are associated with gamma-ray events detectable by Fermi. Clear gamma-ray detections are obtained only when components are moving in a direction closer to our line of sight.This suggests that the observed gamma-ray emission depends not only on the interaction of moving components with the mm-VLBI core, but also on their orientation with respect to the observer. Timing of the gamma-ray detections and ejection of superluminal components locate the gamma-ray production to within almost 0.13 pc from the mm-VLBI core, which was previously estimated to lie about 0.24 pc from the central black hole. This corresponds to about twice the estimated extension of the broad line region, limiting the external photon field and therefore suggesting synchrotron self Compton as the most probable mechanism for the production of the gamma-ray emission. Alternatively, the interaction of components with the jet sheath can provide the necessary photon field to produced the observed gamma-rays by Compton scattering.Comment: Already accepted for publication in The Astrophysical Journa

    The Parsec-scale Structure, Kinematics, and Polarization of Radio-Loud Narrow-Line Seyfert 1 Galaxies

    Get PDF
    Several narrow-line Seyfert 1 galaxies (NLS1s) have now been detected in gamma rays, providing firm evidence that at least some of this class of active galactic nuclei (AGN) produce relativistic jets. The presence of jets in NLS1s is surprising, as these sources are typified by comparatively small black hole masses and near- or super-Eddington accretion rates. This challenges the current understanding of the conditions necessary for jet production. Comparing the properties of the jets in NLS1s with those in more familiar jetted systems is thus essential to improve jet production models. We present early results from our campaign to monitor the kinematics and polarization of the parsec-scale jets in a sample of 15 NLS1s through multifrequency observations with the Very Long Baseline Array. These observations are complemented by fast-cadence 15 GHz monitoring with the Owens Valley Radio Observatory 40m telescope and optical spectroscopic monitoring with with the 2m class telescope at the Guillermo Haro Astrophysics Observatory in Cananea, Mexico.Comment: 4 pages, 1 figure. To appear in the Proceedings of the IAU Symposium No. 313: "Extragalactic jets from every angle," Galapagos, Ecuador, 15-19 September 2014, F. Massaro, C. C. Cheung, E. Lopez, and A. Siemiginowska (Eds.), Cambridge University Pres

    Assembling the Tree of Life in Europe (AToLE)

    Get PDF
    A network of scientists under the umbrella of 'Assembling the Tree of Life in Europe (AToLE)' seeks funding under the FP7-Theme: Cooperation - Environment (including Climate Change and Biodiversity Conservation) programme of the European Commission.
&#xa

    Rapid TeV variability in Blazars as result of Jet-Star Interaction

    Full text link
    We propose a new model for the description of ultra-short flares from TeV blazars by compact magnetized condensations (blobs), produced when red giant stars cross the jet close to the central black hole. Our study includes a simple dynamical model for the evolution of the envelope lost by the star in the jet, and its high energy nonthermal emission through different leptonic and hadronic radiation mechanisms. We show that the fragmented envelope of the star can be accelerated to Lorentz factors up to 100 and radiate effectively the available energy in gamma-rays predominantly through proton synchrotron radiation or external inverse Compton scattering of electrons. The model can readily explain the minute-scale TeV flares on top of longer (typical time-scales of days) gamma-ray variability as observed from the blazar PKS 2155-304. In the framework of the proposed scenario, the key parameters of the source are robustly constrained. In the case of proton synchrotron origin of the emission a mass of the central black hole of MBH108MM_{\rm BH}\approx 10^8 M_{\odot}, a total jet power of Lj2×1047ergs1L_{\rm j} \approx 2\times 10^{47} \, \rm erg\,s^{-1} and a Doppler factor, of the gamma-ray emitting blobs, of δ40\delta\geq 40 are required. Whilst for the external inverse Compton model, parameters of MBH108MM_{\rm BH}\approx 10^8 M_{\odot}, Lj1046ergs1L_{\rm j} \approx 10^{46} \, \rm erg\,s^{-1} and the δ150\delta\geq 150 are required.Comment: 25 pages, 11 figures, Submitted to Ap

    Physical parameters of a relativistic jet at very high redshift: the case of the blazar J1430+4204

    Get PDF
    Context. The high-redshift (z = 4.72) blazar J1430+4204 produced a major radio outburst in 2005. Such outbursts are usually associated with the emergence of a new component in the inner radio jet. Aims. We searched for possible changes in the radio structure on milli-arcsecond angular scales, to determine physical parameters that characterise the relativistic jet ejected from the centre of this source. Methods. We analysed 15-GHz radio interferometric images obtained with the Very Long Baseline Array (VLBA) before and after the peak of the outburst. Results. We did not identify any significant new jet component over a period of 569 days. We estimated the Doppler factor, the Lorentz factor, and the apparent transverse speed of a putative jet component using three different methods. The likely small jet angle to the line of sight and our values of the apparent transverse speed are consistent with not detecting a new jet feature.Comment: (6 pages, 4 figures) accepted for publication in Astronomy and Astrophysic

    An Exceptional Radio Flare in Markarian 421

    Full text link
    In September 2012, the high-synchrotron-peaked (HSP) blazar Markarian 421 underwent a rapid wideband radio flare, reaching nearly twice the brightest level observed in the centimeter band in over three decades of monitoring. In response to this event we carried out a five epoch centimeter- to millimeter-band multifrequency Very Long Baseline Array (VLBA) campaign to investigate the aftermath of this emission event. Rapid radio variations are unprecedented in this object and are surprising in an HSP BL Lac object. In this flare, the 15 GHz flux density increased with an exponential doubling time of about 9 days, then faded to its prior level at a similar rate. This is comparable with the fastest large-amplitude centimeter-band radio variability observed in any blazar. Similar flux density increases were detected up to millimeter bands. This radio flare followed about two months after a similarly unprecedented GeV gamma-ray flare (reaching a daily E>100 MeV flux of (1.2 +/- 0.7)x10^(-6) ph cm^(-2) s^(-1)) reported by the Fermi Large Area Telescope (LAT) collaboration, with a simultaneous tentative TeV detection by ARGO-YBJ. A cross-correlation analysis of long-term 15 GHz and LAT gamma-ray light curves finds a statistically significant correlation with the radio lagging ~40 days behind, suggesting that the gamma-ray emission originates upstream of the radio emission. Preliminary results from our VLBA observations show brightening in the unresolved core region and no evidence for apparent superluminal motions or substantial flux variations downstream.Comment: 5 pages, 8 figures. Contributed talk at the meeting "The Innermost Regions of Relativistic Jets and Their Magnetic Fields", Granada, Spain. Updated to correct author list and reference

    Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    Full text link
    The initial energy transfer in photosynthesis occurs between the light-harvesting pigments and on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that F\"orster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which leads to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited state as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play a central role in the excited state population transfer to bacteriochlorophyll as the resonance between the donor-acceptor energy gap and vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems

    Multiwavelength observations of the blazar BL Lacertae: a new fast TeV γ-ray flare

    Get PDF
    Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Busan (South Korea). Published in Proceeding of Science.Observations of fast TeV γ-ray flares from blazars reveal the extreme compactness of emitting regions in blazar jets. Combined with very-long-baseline radio interferometry measurements, they probe the structure and emission mechanism of the jet. We report on a fast TeV γ-ray flare from BL Lacertae observed by VERITAS, with a rise time of about 2.3 hours and a decay time of about 36 minutes. The peak flux at >200 GeV measured with the 4-minute binned light curve is (4.2±0.6)×10−6photonsm−2s−1, or ∼180% the Crab Nebula flux. Variability in GeV γ-ray, X-ray, and optical flux, as well as in optical and radio polarization was observed around the time of the TeV γ-ray flare. A possible superluminal knot was identified in the VLBA observations at 43 GHz. The flare constrains the size of the emitting region, and is consistent with several theoretical models with stationary shocks
    corecore