33 research outputs found

    The prevalence and associated factors of microsatellite instability in ovarian epithelial cancers detected by molecular genetic studies in a sample of Iranian women

    Get PDF
    Background: Microsatellite instability, the main genetic element in HNPCC syndrome, is associated with a number of cancers, including ovarian epithelial carcinomas. These cancers have distinct characteristics compared to non-MSI related ones. Objectives: The present study aims at determining the prevalence of microsatellite instability in ovarian carcinomas and their associated factors in Iranian patients. Methods: Paraffin-embedded blocks, belonging to 37 patients with definite diagnosis of ovarian epithelial cancers, were retrieved from the archives. After DNA extraction from tumor tissue and PCR reaction, the results were assessed in accordance with melting curve analysis. Subsequently, the relationship among microsatellite status and tumor histology, grade, stage, and size were investigated statistically. Results: The predominant histological type was serous histology. Four out of 37 carcinomas were microsatellite unstable (10.8) and only 1 was MSI-high type (2.1). The MSI was more frequent among younger patients with unilateral, non-serous histology, non-high grade, and stage I tumors without omental involvement. After statistical analysis, the only significant relationship was found between histological type (non-serous) and microsatellite status. Conclusions: Microsatellite stable and unstable ovarian cancers may have different associations with various factors in a sample of Iranian women. The identification of these characteristics may help narrow down indications to test this prognostic and predictive genetic error. © 2017, Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences

    The prevalence and associated factors of microsatellite instability in ovarian epithelial cancers detected by molecular genetic studies in a sample of Iranian women

    Get PDF
    Background: Microsatellite instability, the main genetic element in HNPCC syndrome, is associated with a number of cancers, including ovarian epithelial carcinomas. These cancers have distinct characteristics compared to non-MSI related ones. Objectives: The present study aims at determining the prevalence of microsatellite instability in ovarian carcinomas and their associated factors in Iranian patients. Methods: Paraffin-embedded blocks, belonging to 37 patients with definite diagnosis of ovarian epithelial cancers, were retrieved from the archives. After DNA extraction from tumor tissue and PCR reaction, the results were assessed in accordance with melting curve analysis. Subsequently, the relationship among microsatellite status and tumor histology, grade, stage, and size were investigated statistically. Results: The predominant histological type was serous histology. Four out of 37 carcinomas were microsatellite unstable (10.8) and only 1 was MSI-high type (2.1). The MSI was more frequent among younger patients with unilateral, non-serous histology, non-high grade, and stage I tumors without omental involvement. After statistical analysis, the only significant relationship was found between histological type (non-serous) and microsatellite status. Conclusions: Microsatellite stable and unstable ovarian cancers may have different associations with various factors in a sample of Iranian women. The identification of these characteristics may help narrow down indications to test this prognostic and predictive genetic error. © 2017, Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences

    Evaluating hospital websites in Kuwait to improve consumer engagement and access to health information:a cross-sectional analytical study

    Get PDF
    Abstract Background Current advances in information and communication technology have made accessing and obtaining health-related information easier than ever before. Today, many hospital websites use a patient-centric approach to promote engagement and encourage learning for better health-related decision making. However, little is known about the current state of hospital websites in the State of Kuwait. This study aims to evaluate hospital websites in Kuwait and offer recommendations to improve patient engagement and access to health information. Methods This study employs a cross-sectional analytical approach to evaluate hospital websites in Kuwait in 2017. The websites of hospitals that provide in-patient services were identified through a structured search. Only active websites that were available in either English or Arabic were considered. The evaluation of the websites involved a combination of automated and expert- based evaluation methods and was performed across four dimensions: Accessibility, Usability, Presence, and Content. Results Nine hospitals met the inclusion criteria. Most of the websites fell short in all four dimensions. None of the websites passed the accessibility guidelines. The usability of websites varied between hospitals. Overall, the majority of hospitals in Kuwait have rudimentary online presence and their websites require careful reassessment with respect to design, content, and user experience. The websites focus primarily on promoting services provided by the hospital rather than engaging and communicating with patients or providing evidence-based information. Conclusions Healthcare organization and website developers should follow best-practices to improve their websites taking into consideration the quality, readability, objectivity, coverage and currency of the information as well as the design of their websites. Hospitals should leverage social media to gain outreach and better engagement with consumers. The websites should be offered in additional languages commonly spoken by people living in Kuwait. Efforts should be made to ensure that health information on hospital websites are evidence-based and checked by healthcare professionals

    Inhibitive effect of sodium (E)-4-(4-nitrobenzylidenamino) benzoate on the corrosion of some metals in sodium chloride solution

    Get PDF
    The inhibition performance of a novel anionic carboxylic Schiff base, sodium (E)-4-(4-nitrobenzylideneamino)benzoate (SNBB), was investigated for various metals, namely low carbon steel F111, pure iron and copper, in neutral 10 mM NaCl solution. Potentiodynamic polarization, scanning vibrating electrode technique (SVET), quantum chemical (QC) calculation, and molecular dynamics (MD) simulation were employed. The potentiodynamic polarization data showed that SNBB acts as an effective corrosion inhibitor for both iron and F111 steel, but it is not effective for the copper. In situ spatially-resolved SVET maps evidenced a major change in surface reactivity for Fe and F111 steel immersed in 10 mM aqueous solution in the absence and in the presence of SNBB. Featureless ionic current density distributions were recorded in the presence of SNBB at both their spontaneous open circuit potential (OCP) and under mild anodic polarization conditions, while major ionic flows were monitored above the metals in the absence of SNBB. On the basis of computer simulations, it is proposed that SNBB produces a stable chelate film on iron and steel surfaces that accounts for the good corrosion inhibition efficiency observed. The different inhibition efficiencies of SNBB molecules on the iron and copper was attributed to the special chemical structure of SNBB molecule and its different chelation ability with the released metal ions on the metal surface. The QC calculations also confirmed the high corrosion inhibition efficiency of SNBB. The MD simulation indicated higher binding energy of SNBB on iron surface compared to that of copper surface. The interaction mode of SNBB on iron and F111 steel surfaces corresponds to a mixed chemical and physical adsorption, and it obeys the Langmuir isother

    Hydrology and hydrobiology and environmental pollutions in lower than 10 meters depths of Caspian Sea

    Get PDF
    The present project in related to survey of factors and hydrology and hydrochemical features (water temperature, dissolve oxygen saturation, pH, clearance, salinity, nitrogen, phosphorus and silicon) hydrobiology (zooplankton, phytoplankton, macrobenthos) and survey of bio environment pollution (oil, heavy metal, detergent) executed in lower 10m in different water larger in southern Caspian Sea in 2002-2003. For sampling 8 lines number were vertical on coast that selected from Astra in west to Gomishan in east in southern Caspian Sea basin. The result indicated the average physical factors such as pH were 8.11 and salinity12.12 ppt ,and disolve oxygen6.7 mg/l. Average chemical factors such as NO_2 , NO_3 and NH_4 were 1.2 µg/l, 25.7 µg/l, 13 µg/l respectively.Total nitogen and organic nitrogen and inorganic nitrogen were 690.2 µg/l , 667.6 µg/l , 41.6 µg/l. Average silicat were recrded 266.35 µg/l . Total Phosphorus was observed 37.35 µg/l and average of organic Phosphorus concentration was and 20.25 µg/l .Average of Total organic matter (T.O.M) was 4.98% maximum amount were observed in Lisar and minimum in Nooshahr . Concentration of heavy metal during sampling were respectively ,Fe>Mn>Zn>Cr>Ph>Co>Cd>Cu. Maximum concentration of Fe were determined in winter in Nooshahr and Babolsar respectively 13/3 µg/l 17/1 µg/l. In many stations and different Season, the amount of heavy meta were lower standard of in marine water. The concentration of oil hydrocarborate (PAHs) in autumn was 0/13 ppb and in winter 0/12 ppb. The amount of (PAHs) in Southern Caspian Sea were Lower than other parts of Caspian Sea. The average of detergent concentration (LAS) was 0/036 µg/l that was two fold higher than determined in 2001. Total 107 species of phytoplankton belong to 5 phylum were identified. The numbers of species of phytoplankton groups were respectively, chrysophyta (42 species), cyanophyta (17 species), pyruphyta (17 species), chlorophyta (21 species) and euglenophyta (9 species). The maximum diversity of phytoplankton observed in summer and minimum in autumn. High diversity of chrysophta and cyanophyta observed in summer and phyrophyta and chrlophyta in spring. The composition of phytoplanhkton groups were respectively, chrysophyta (70%), phyrophyta (9%) and chlorophyta (7%) and euglonophyta (1%). Maximum density of phytoplankton was observed in autumn and minimum in winter. Total 19 species of Zooplankton were identified. Maximum diversity was observed in summer and minimum in winter. Zooplankton changes during sampling, showed amount of density of zooplankton in 5m were more than 10 m depths. Total (17 species macrobenthos were identified. The composition of macrobenthos groups were respectively , Annalida (92/7% ) , Bivalvia (2/7%) gumarida (108%) cumacea ( 1/5%) , Balanidae 103% . max . density were observed in Astara and min . in Sefied roud Average of density were 1218 0/851 ind /m^2 and biomass 14 15 g/m^2 High density were recorded in autumn and low density in winter . Correlation of phytoplankton and zooplankton with physicochemical parameter and also relation between total organic matter and sediment grain size were calculated.Ecological indicies (simpson diversity evenns diversity and shanoon-wiever diversity) were calculated for macrobenthos. Data were shown impact of cetenephora (Mnenemiopsis leidyi) on zooplankton and phytoplankton and macrobenthos density

    The Prevalence of Sleep Apnea in Iran: a Systematic Review and Meta-Analysis

    Get PDF
    Background: Sleep apnea is a common sleep disorder which is associated with cardiovascular diseases, diabetes and stroke. Different studies conducted in Iran have reported different prevalence for sleep apnea. The aim of the present study was to determine the prevalence of sleep apnea in Iran. Materials and Methods: In this study, 42 studies that have been published in Farsi and English languages were selected with no time limit up to the March of 2018. Article search was conducted using "prevalence", "frequency", "sleep apnea" and "obstructive sleep apnea" keywords in Scientific Information Database (SID), MagIran, Google Scholar, Science Direct, PubMed and Scopus databases. Data were analyzed using meta-analysis and random effect model methods. Heterogeneity between the studies was evaluated using I(2) test. Data were analyzed using Stata software version 11.2. Results: The total prevalence of metabolic syndrome was 44 (95 CI: 35 to 53). The highest prevalence of sleep apnea distinguished by the disease belonged to patients with sleep disorders (74, 95 CI: 66-82), diabetes mellitus (61; 95 CI: 46-76) and cardiovascular disease (55; 95 CI: 47-63). Conclusion: Given high prevalence of sleep apnea in Iran, identifying people at risk and providing instructional materials for controlling and treating sleep apnea is necessary

    Brucellosis-Induced Avascular Necrosis of the Hip in a Middle-Aged Person

    No full text
    Background: Brucellosis is a zoonotic disease mostly transmitted to humans through consumption of unpasteurized dairy products and can lead to a systemic disease with any organ involvement. In this report, we describe a case of brucellosis-induced avascular necrosis of the hip. Brucellosis was diagnosed through serological tests, and avascular necrosis of the femoral head was confirmed by pelvic MRI. The patient was treated with a combination of antimicrobial treatments and referred to the orthopedic service for total hip arthroplasty. Brucellosis may present with unusual manifestations and should be always taken into consideration, particularly in endemic areas

    Inhibitive effect of sodium (E)-4-(4-nitrobenzylideneamino)benzoate on the corrosion of some metals in sodium chloride solution

    No full text
    The inhibition performance of a novel anionic carboxylic Schiff base, sodium (E)-4-(4-nitrobenzylideneamino)benzoate (SNBB), was investigated for various metals, namely low carbon steel F111, pure iron and copper, in neutral 10 mM NaCl solution. Potentiodynamic polarization, scanning vibrating electrode technique (SVET), quantum chemical (QC) calculation, and molecular dynamics (MD) simulation were employed. The potentiodynamic polarization data showed that SNBB acts as an effective corrosion inhibitor for both iron and F111 steel, but it is not effective for copper. In situ spatially-resolved SVET maps evidenced a major change in surface reactivity for Fe and F111 steel immersed in 10 mM aqueous solution in the absence and in the presence of SNBB. Featureless ionic current density distributions were recorded in the presence of SNBB at both their spontaneous open circuit potential (OCP) and under mild anodic polarization conditions, while major ionic flows were monitored above the metals in the absence of SNBB. On the basis of computer simulations, it is proposed that SNBB produces a stable chelate film on iron and steel surfaces that accounts for the good corrosion inhibition efficiency observed. The different inhibition efficiencies of SNBB molecules on iron and copper was attributed to the special chemical structure of the SNBB molecule, and its different chelation ability with the released metal ions on the metal surface. The QC calculations also confirmed the high corrosion inhibition efficiency of SNBB. The MD simulation indicated higher binding energy of SNBB on iron surface compared to that of copper surface. The interaction mode of SNBB on iron and F111 steel surfaces corresponds to a mixed chemical and physical adsorption, and it obeys the Langmuir isotherm

    Pitting corrosion inhibition of 304 stainless steel in NaCl solution by three newly synthesized carboxylic Schiff bases

    No full text
    Three newly synthesized Schiff base derivatives, sodium (E)-4-(nitrobenzylideneamino)-benzoate (SNBB), sodium (E)-4-(benzylideneamino)-benzoate (SBB), and sodium (E)-4-(hydroxybenzylideneamino)-benzoate (SHBB) were investigated as pitting corrosion inhibitors for 304 stainless steel in neutral 0.1 M NaCl. Potentiodynamic polarization evidenced major shifts in pitting potential to more positive values with increasing inhibitor concentration. The scanning vibrating electrode technique (SVET) imaged metastable pitting in 0.1 M NaCl, but not in the presence of the inhibitor, indicating that it prevented pit nucleation. The inhibition performance was established under anodic polarization conditions, because only minute local anodic activity due to metastable pit formation could be observed when the steel was exposed to SNBB-containing solution, whereas the metal would undergo pit propagation at the same potential in the inhibitor-free solution. X-ray photoelectron spectroscopy (XPS) analysis evidenced chromium enrichment at weak points (pores) of the passive film at anodic polarization condition where sudden release of Fe cations is possible. In this way, the SNBB molecules will migrate to these sites to react with the Fe ions and form a chelate compound which will deposit finally at those sites and plug them, whereas no effect occurred at the open circuit potential (OCP)

    Synthesis and evaluation of anionic schiff bases as pitting corrosion inhibitor for stainless steel 304 in NaCl solution

    No full text
    ECS Meeting Abstracts; Volume MA2019-01The high corrosion resistance of austenitic stainless steel (SS) arises from the formation of a thin, adherent and protective passive film that forms instantaneously on the surface. Unfortunately, in the presence of aggressive ions like chloride anion, the corrosion resistance of passivated stainless steel is limited by local breakdown and pit nucleation [1]. An efficient and economical method to decrease the metal dissolution in aggressive media is the use of corrosion inhibitors. A large number of organic molecules containing electronegative functional groups, such as ¿-electron systems or heteroatoms have been proposed for the inhibition of general metallic corrosion, although the use of organic compounds as pitting corrosion inhibitors in neutral solutions is still rather limited. On the other hand, inorganic-based compounds such as chromates and nitrates are also used as pitting corrosion inhibitors for SS in aggressive media; however the application of these inorganics, especially chromates and phosphates, is not recommended because of their biological toxicity. More recently, Schiff bases have been described as cost effective inhibitors due to their robust and convenient synthesis from inexpensive precursors. They are organic compounds containing the imine (-C=N-) functional group in their structure. Schiff base derivatives with additional heteroatoms, such as N and O, and aryl groups have been used as corrosion inhibitors [2,3], but their application as pitting corrosion inhibitors has not been described. In the present study, three new anionic Schiff bases were synthesized through by reacting para-amino benzoic acid with several aromatic aldehydes containing different functional groups in their para- site. They were designed to improve water solubility, to enhance coordination with Fe atoms by including N and O heteroatoms, two benzene rings and the imine group in their chemical structure, and to be large enough to create heavy hydrophobic complex with Fe+3. The inhibitor efficiency of these compounds as pitting corrosion inhibitor for 304 SS in neutral 0.1 M NaCl was examined using potentiodynamic polarization measurements, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) . Polarization data show the shift of the pitting potential to more positive values with increasing inhibitor concentration. Surface analysis shows chromium enrichment at the metal surface under anodic polarization in the passive region of the metal when the inhibitor compound is present in the test solution, whereas no effect occurs under open circuit conditions. XPS data show that the inhibitor molecules do not adsorb on the clean metal, but on the passive layer instead
    corecore